AD-R168 298 GENERALIZED NETHORK IHPLENENTRTIONS(U) GEORGIR NlST OF
TECH ATLANTA PRODUCTION AND DISTRIBUTION RESERRCH
CENTER J J JARVIS ET AL. 1986 PDRC-86-83

UNCLASSIFIED N89814-85-C-08797

oo -

‘r}“H o

-F ot

=

T

A

e &

"I’-‘ .
b iE

enl——

fl2s e gee

NATIONAL BUREAU OF ¢
WOROCOPY RESOLLY TES)

I Oy ‘-\"(-.‘,S" T é IR P T PP RO
B ’]

Lty

DTN

W—?

Generalized Netwvork Implementationas

John J. Jarvis
H. Donald Ratliff
Michael A. Trick

PDRC 86-03

A

LS
-

-
-
S

,r----.
) - g
Pt b

e

o
‘.
K,

et
o o

o

L |

-
o

T

3

‘kﬁﬁﬁﬁﬁﬁeﬁ.

~ad" |
[y

[I

‘- o
-

>]
Jooy

-
>
A A

i

%‘ LAASE "%“

Yo =3

P28

B

»

e
S

“1.
L
Pl

N , s
A R L o R

..........

Report for:
Joint Deployment Agency

MacDill Air Force Base, FL 33608

Generalized Netvork Implementations

John J. Jarvis
H. Donald Ratliff
Michael A. Trick

PDRC 86-03

Raport by:
School of Industrial and Systems Engineering

Georgias Inatitute of Technology
Atlanta, GA 30332

aaaaaa (EMEMAMAENENENANNY Y

DTIC

ELECTE
JUN O 3 1386,

D

This vork is supported by the Office of Naval Research under Contract

in part is permitted for any purpose of the U. S.

DISTRIBUTION STATEMENT R ‘

Approved for public release}
| Distribution Unlimited

o W S g s

R e e e A oA

.No. N0O0014-83-C-0797 and NOOO14-83-K-0147. Reproduction in wvhole or

Government

_—

5& TABLE OF CONTENTS
1. I"TRODUCTIO" ® ® & 0 0 5 06 5 0 0 5 O PO O OO O TS OV O O SO O PO QST OO eSS eSO e
2. MODELING WITH GENERALIZED NETWORKS ...cccccovcesccccrsnrsosne
! 2.1 Pure Netvorks © 006060080000 0000080000000000060000s0000606000
2.2 Generslized NetvworkS ..ccccccesvcscvcccscsccscsscssncnnse
2.3 Th. SCOPE HRHATE HOd.I ® © 6 0 6 00 5 00 09080 ° 00208 eSO OE S e
SOLVING GENERALIZED NETWORKS .cccccccecoccsccssncssscsnocsnsasssce

1
3

3
6
7
13
3.1 Linear Progrllling I N A A N A N N R R R N I NN S PSP) 13
1S
18
18
20

a3
w

3.2 Solving Linear Progrsms - The Primal Simplex Method ..
STDRI"G THB BASIS ® 0 6 0 05 00 5 0% 5 OO OO O S OO GO OO Pe PO
4.1 Basis Definition 0060060000 0600000000000806060000060608000080s s
4.1.1 Specialization for the SCOPE Modelcccccese

4.2 Storing the Basis ..ccccctvvsesesscccscssccsssssssossse 23

4,2.1 Predecessor Structure®ccccccccsscccosscccce 23

4.2.2 Thread StruCtuTr® ..ccccccccecccsccccscsssscssosns 25

4.2.3 Level StructUr® .ccccccevescccccsccsscccssncsose 27

4.2.4 Reverse Thread Structureccccscvsccoscsoces 27

4.2.5 Arc Information Structuresccccccceccscccss 27

4.2.6 Dual Value Structur®ccccecececccscccscsass 31

4.2.7 Cycl. Hultipli'r 0000000 es0sstsss et sttt S 31

5. HA"DLING ARCS ® 0 080 000 5 02 00 5000 0 000080060 000 e OO0 O s 9SS B e 34

S.1 Choosing an Entering ATC ..ccsccsceossssccsscessssssees 34

\ S.1.1 Fixed Page Methodcccccctcesccccosccscssscss 36

1 3.1.2 Candidate List Methods

3 5.2 Storing Arc DatB® ..ccevsecccccsscscncssscscccscasscsccss 37

S.3 Specialization for MRMATEc.ccccveevsoccccvcsssssece 37

6. FINDING THE EXITING ARC ..ccccececccvcscssccsssssssssssccnse 39

6.1 Calculating the Exiting Arc ..cccocceecccccccccsccscses 41

7. UPDATING THE BASIS ...cceecsecccssccsssscessassassoscsccsacass 45

7.1 Updating the Basis Structuresccecccccs0ccc0ceee 45

7:1.1 PivOot TYP®SB .cceevsccccscsscncsnssnsssscnsscccss 45

7.1.2 Common ROULINES ...scvevscoscsccssscccsnccscsssss 46

701.2.1 “A“G Routin. ® 6 & 0 0 065 0 0600 5 0600008t S s 46

7.1.2.2 ISOLATE Routine ..ccccocececscoscrcscsse S

7.1.2.3 REROOT Routine ...c.ccccecsvvcossccccconcee 53

7.1.2.4 REV_CYC_REROOT Routine® .cccccececcccccece 595

7:.1.2.5 CYC_REROOT RoUtin® ..cc.cccvveccccensces 57

7.1.3 The Pivot Routinesccoccsvencsnccscscass 59

7:1.3.1 Pivot Typ@® 1 ...t ccecveccsocsssssscsossccs 59

7:.1.3.2 Pivot Type 2ccvcecssccscnscsscsssvss 59

7:2.3.3 Pivot TYP@® 3 .t cececcsnsccsscecncsasssss 62

7:1.3.4 Pivot TYpP® 4 ...ccceccccncsccsncccsnsseccs 66

7:.1.3.3 Pivot Type S .(.icecvcvonsocssssssncences 7%

7.103.6 Pivot Typ.s ® & 0 6 06 066 8 060 08 85 5 805 0 06 505 H 00 s s 75

7.2 Updating the DUuBl® ...c.ccscevscssscsossscsscssssnccsee 75

7.2.1 Dual Values on the CyCle® ...c:.cecvccccccscscecss 79

5 7.2.2 Dual Values not on the Cycle

TN T 5N T
>

-

® 0 6 2 0060600006008 00060080000 36

F;:'.-;

a0

P2 |

e

® 8 506 0000008068000 00 80

A (7. 3 Upd.ting th. Flo'. ® 0 0 000 000 000000 00006000 OO OSSO E e 80
\“ a. OTHER CO"CER"S ® & 85 0 5 60606 000 00048 0 0008000 PO SO EN O et e eSS er DR 82
‘,"f 8. 1 Initi.l B..i. ® © 9 86 0 0806065 0080000 0600060060800 0000000000000 32
y 8. 1. 1 Arti‘ici.l st.rt L TN S B BN BN BN BN BN BRI RN Y I RN IR R B RN I I I N S 83

00102 Adv.nc.d st.rt ® 6 & &6 5 8 5 5085 05 000050 0008 09080 eac0n 8‘
8.1.3 Specislization for MRMATE

® 6 ® & 5 60 8 068 06 006 9 00 00 e BG
8.2 Effect of Pure Netvork Structur®cccccececccceecs 86
& a. 2. 1 sp.ci.liz.tion :or HRHATE ® & 6 5 8 & & 65 0 0 20 S0P e e 0 89

b N

s Wk B

=

s
4

g

-y
L

B

e
v R

> IR e R

[8
-

6-20

Netvork Representation
SCOPE Basic NModel
SCOPE Generalized Netvork NModel
Components
Valid and Invalid Basis
Linked Rooted Trees

Predecessor Structure
Thread StrUuCtUr® ccccccscccccrssocsscscssssccssncsssssces 28
Level Structure
Reverse Thread Structure

® 6 065 0080600600808 805200000 12

® © 060500 090 9 000000858 S 0PSO LSS S NS SSO 0 NS PSS 19
® 9 O 8 00 0600000060060 000648 06006009000 21

® 8 000 00 00000000 0000000080008l 2‘

0 5 0 55 60 0000808060088 000888 08ses s 26

Arc Structure

Flov Required at Nodes
Updated Coluwmn
Pivot Types

HANG Routine

ISOLATE Routine
REROOT Routine
REV_CYC_REROOT Routine

CYC_REROOT
Pivot Type
Pivot Type
Pivot Type
Pivot Type
Pivot Type
Pivot Type
Pivat Type
Pivot Type
Pivot Type
Pivot Type
Artificial

Advanced Stsrt Basis

©© 0200000080000 s0cetsEtERSROIOSEOERIDROLEOETSLS 29

00 0ess0000s0000s0000 000000 30

S0P S DTSS0S0 LI 0000000000c0000000000000 2
2000000000000 00000000s0 000000 40

9 60000000000 00000000000000686000606000000s0 43

$ 60000 000 0800000600000 00000800000C0COC0CO0CCIOEOETLILES 47

© 0000000000000 00000000000000000000000000 350

2 0000 E0 0 EPPO0000OIROLIGEIOROOPESEONRIBSERIOEITSES 52
6000000000000 000sc00PsRNROROIOOLIOGIOGOOEOLPOIEOETODE S4

P N N N A I A S A S ISP A A AP I SN A N 56

Routine © 0 0000000060088 8000000000000000000s S8
2 - Initi.l Position LI IR I SO BT AP S SR B S S R S N) 60
2 - During Pivot e0s006c0060ss000000s000c 0 61
3 - Initi.l POIition R R RN X IR NI I I I AP A S Y 63
3 - Dufing Pivot s 0000000000000 000000000a0 64
‘ - Initi-l POIition S e nversrsPs00ssssR e 67
4 - During Pivot R R I NN I A S B B S S S S 68
5 - Initi.l Position s 0 ecosserveessecso e 72
S - D“ring Pivot e0 0000000000000 000 0000 73
6 - Initial Position ...cecececcccsccccces 76
6 - During Pivot 0 e0re0s0 0000000000000 77
Basis R R R R R R R RN I W N S A I I S AP S I S Y 8%

LIST OF FIGURES

® 0 00 0600600800600 0 06000008800 soo 5

® 06 5 00 000 000000005 SO SO O s e 0Ll e 10

@ ® © 000 0008006000 OOE OSSO E SO O s e 87

Generalized Netvork Transformable to Pure Netwvork
Equivalent to "Alwmost Pure® Netwvork

® 0 ® 00000 00 0o 0o 91

Accesion For

NTIS CRA&I
DTIC TAB 0

| Unannounced 0O

Justification _

By

Distribution |

Availability Codes

Avail and|or

Dist Special

LN 90

— T

QUALITY
NSPECTED

3

\ 1. INTRODUCTION

\\\\
) Generalized netwvorks are an important class of optimization
models, vwith uses in a vide variety of fields. This report describes

the development and implementation of a generalized netwvork

algorithnm. : T

3

A oy R

In (3], g_nrvi- et. al. recommend a generalized netvork model,

system for closure optimization and planning (SCOPE), for crisis

action deployment planning. In SCOPE, large generalized netwvorks

must be repeatedly solved. These netvorks have special structure,

vhich results in conputitional advantages.
g In this report, a generalized netvork implementation is developed
¢ for solving very large generalized hetvorks. This implementation

includes nev data structures for storing the basis, in-core/out-of-

ﬁ core handling of the arcs;, and special handling of pure network
structure.

*l

fi In this report, a detailed examination of the SCOPE model is

provided and its effect on implementation issues is d scussed. The
SCOPE madel is highly structured. This report demonstrates hov this
structure can be used to ldv.nthgo. In . conpanion relm:rt 413,

T e ey ¢ = ——— — e e PR R ——)

extensive to-ting :Lg presented vhich addresases the question 7w/hat

= A

}Cﬁ- affects the computation time for a SCOPE nodol?'ﬁl

" Section 2 provides an introduction to modeling vith pure and

ﬁ generalized netvorks. Section 3 gives an overviev of linear

o programming, as it applies to generalized netvork solution wmethods.

In msection 4, the special structure of a generalized network basis is

detailed and efficient storage methods are developed. Section S

gives methods for handling the arc data. This includes both ltornge

;

Q p \‘ ‘J\‘f [;/ oLl "i'vii/x‘,P\r?,\/y%/ l
S < 3 e 128440 ANE

; BRE D

L.
1‘/

TR A YTy a MER TR T W

methods and techniques for determining the arc to enter the basis. A
method for determining the arc to leave the basis is given in section
€. Section 7 describes, in detail, the algorithms used to update the
basis structures. Section 8 discusses some related implementation

concerns. These include the initial basis to be used, and the effect

of embedded pure netwvork structure. Section 9 gives a reviev of the

conclusions.

I

[yon 2
AT

wm;E Aae

i

K3

wd =

e

- == BR

RS OB 5T W %

Wtats

R

e

2.0 MODELING WITH GENERALIZED NETWORKS

Generalized netwvorks, as the name suggests, are a generalization
of standard, or "pure®”, netvorks. By modifying a restriction that
occurs in pure netvorks, many previously intractable problems have
been modeled. Section 2.1 provides a brief overviewv of pure netvork
modeling. Section 2.2 expands this overviev to include generalized
netvorks. Section 2.3 detesils the SCOPE generalized netvork model.
The SCOPE wodel is an example of generalized netvork model. It will

form the basis for the examples used later in thias report.

2.1 Pure Netvorks

A "pure” netvork can be thought of as a pipeline systew. This
system has suppliers and users of the materiel flowing through the
pipe. Each of the suppliers snd users has a knovn supply and demand
respectively. The pipeline connects the suppliers and users. The
pipeline wmay have intermediaste junction points wvhich are not
suppliers or users. (An example would be a pumping station.)

Each pipe has a known capacity. This gaplcity represents the
limit on the pipe expressed in the rate of flov of materiel through
the pipe. There is a unit cost asmsociated vith materiel that flovs
through the pipe. This cost is linear in the quantity of materiel;
in other wvords, if the amount flowving through a pipe is doubled, then

the cost is also doubled,

The objective is to move the materiel from the suppliers to the

- @ Mmms m® 2 A =2 x 2 Sam e 2 3 ¥ 2 2 M

—

RV

e,

D e

li‘

&

users through the pipeline at minimum cost. This involves assigning
flows to pipes s0 that (1) each user gets the amount needed; (2) no
supplier sends more than available; (3) no pipe has more materiel
than its capacity; (4) no materiel enters or leaves the system except
at users or suppliers; and (3) vhat enters the pipe at one end,
leaves it at the other.

The suppliers, users, and junctions vhere tvo or more pipes come
together may be represented by points, called nodes. The lengths of
pipes betveen points (nodes) are called arcs. Associated with each
node is a number, called its requirement. If the requirement is
negative, then the node is a supplier, and the number is the amount
that it can supply. If the requirement is positive, then the node is
a user, and the number represents the amount it demands. A zero
requirement can be used for junctions vhere arcs meet without
representing a supplier or user.

Associated vith each node is a flag. The flag indicates vhether
the requirement must be met exactly, or vhether the absolute value of

the requirement represents an upper bound for the supplier (or user).

This accommodates models with nodes in which suppliers must ship the
full amount of their supply and for users that may or may not use the
full demand indicated for them.

Arcs have capacities, cost and direction. The node that an arc
begins at is called its "TAIL®. The ending node is the "HEAD®". For
arc number ARC these two ends are referred to as TAIL(ARC) and

HEAD(ARC) respectively.

Figure 2-1 shovs a sample netvork. The circles represent nodes.

¢
.
A Y
hl
¥
N

The lines (arrovs) botvoen them are the arcs.

&
1A XA Bl o L AT AR

R LA LA Fhe A 03 R} I A LU

Y Ak Al Al kb Rl dle die dla Ala fia 2 s bia Sia B A £ A AVl Bia A i Bra B A A g S il Aok A od b d Solk ot Sale ek)

&=

A Ari).

AR

|

(5,500)

a0
»

35343

1A

10090

K

v l.‘t

e

(8,100)

o

(2,500)

label on arcs: (cost,capacitv)
label on nodes: demand

| P

|

\E:‘,“

i
1
F
L

-

5

{
oy
e Figure 2-1, Network Reoresentation

N
(
t
A\
\
M
v]
ATt
' \--

g,

o

2.2 Generalized Netvorks

Generalized netvorks are extensions of pure netvorks. The
difference is that the restriction that "flov into an arc equals flovw
out of the arc®" is relaxed. Inatend; a generalized netwvork allovs
for "leaky" arcs or arcs that gain flov. The loss or gain is
specific to each arc and can vary throughoﬁt the netvork. The only
requirement is that the arc must gain or lose a constant fraction of
its flov. For inastance, an arc might alvays triple its flov; another
pipe wmight alvays quarter its flow. The fraction that the arc
changes the flov is called the multiplier. The multipliers for the
example arcs are 3 and 0.25 respectively. As a matter of convention,
costs are calculated by multiplying the flov that enters the arc by
the arc cost.

Because of gains and losses in a generalized netwvork, it is
imposasible to require that supply equals dewand, asiia normal in pure
netvork models. *Slack" and "surplus® arcs are required to model the
excess supply or demand that normally occurs in a generalized
netvorka.' These "slack"™ and "surplus® arcs are modeled using "self-
loops" at each node. "Self-loops" sre arcs that begin and end at the
same node. Surplus arcs, associated with demand nodes, have
multipliers of +1. Slack arcs, attached to supply nodes have
multipliers of -1.

All other properties of pure netvorkas hold for generalized
netvorks. A generalized netvork with all multipliers equal to one is
a pure netvork. An arc vith a multiplier of one is called a pure
arc.

Generalized netvork models are very useful in many problems.

AR ANt AL LA Al el |

---------—-uw-uun-unu-nun-nnwnnwn!unmnvnnvnwmnwnvnnwnvawnnrwﬂwvwwwwnnrnw1

| X7

1) In a financial model, materiel floving in a netvork represents

AL

money and nodes represent various points in time. Multipliers can be

used to represent increase in money due to interest.

2) 1In an energy allocation model, materiel floving in a network

L

represents electricity, and arcs represent physical vires.
Multipliers can be used to model energy losses that result vhen
electricity flovs along a vire.

3) In a deployment model, materiel flowving in the netwvork are

&S A

men and equipment to be moved. Arcs represent movement, by either

airplane or ship. If materiel is moved by air then the wveight

DEAr 4

(STONS) of the wmateriel determines the amount that can be moved. If

x
x

movement is by sea, then the volume (MTONS) or square footage of the

movement requirement is critical. MNMultipliers can be used to model

s
s

a

e

conversion of weight into volume.

2.3 The SCOPE MRMATE NModel

S\
In [3], a method for solving a large deployment problem wvas

!! presented. This wmethod, called System for Closure Planning and

'; Evaluation (SCOPE), addressed the following problem:

- Given a set of assets (airplanes and ships), & set of movement

z; requirements (people, ammunition, etc.), and a set of ports to use,
4 :- is there s vay to move the movement requirements with the available
1 ﬂf assets through ports so that the requirements arrive at the target
! v area vhen needed?

red

" A much more detailed examination of the problem is provided in

E (3]). The wethod proposed is baesed on three optimization components:

a netvork flov vith side constraints vhich assigne aassets to pairs of

.

AT AT I Te '\J_NM*‘)- T O T O Ty WO T B e T T AT AN T T T T T T G ‘_‘...'.__-,._'.}'.".J_*."—.-_'."t_’\"-‘_-.'h-\._\‘
i*.ﬂ'.n'nﬁ‘:&.‘.n* 4 J&m&)&uﬂ?ﬂ.&m&‘S;C‘;Q’i'}‘g&;:m{uﬂ‘.&gﬁziffzﬁxgﬁ:Jh}x:;u'n.:.&%}gj R T STS S AN YRS |

& e e e

- . o

= i gl giragir ol o

) - . - N T TN T e) - RS . - e %A Ta A TR e T AT T AT AL N N e
S S L et IO S T N e T A T IO T P PP A AR LN
o A a2 LT eA SRR, WS (43 . ; > (ol o B A ol L8 sl gl - AV i R ilbuiindd -

Cod e d

';‘v’v

N |

¥
PR)

i |

-
'y

L“);.ll;‘x

v
-
¥

&3F

b

ports; a generalized netvork flov vhich asaigns the movement
requirements to assets; and a Benders’ constraint generator to link
together the tvo models. This report is concerned only with the
second of the cptimization pieces.

Fundamental to the SCOPE method is the concept of channels. A
channel consists of a pair of ports, together with a number of
identical assets. One port, the Port of Embarkation (POE), is vhere
the movement requirements vwill be loaded onto the assets. The other
port, the Port of Debarkation (POD), is the destination of the
assets. The assets are assumed to cycle betwveen the POE and PQD.
Depending on the distance between the POE and POD, the assets may be
able to make one or more trips betwveen the POE and POD in a single
time period (which can be taken as a day for simplicity). Or, if the
ports are far apart or the asset moves slovly, it may take several
days to cycle betwveen the POE and the POD. The capability of the
channel is the rate at vhich the assets deliver movement requirements
to the POD from the POE.

The first optimization model in SCOPE determines the channel
capabilitiea. The second, generalized netvork model, must assign the
movement requirements to channels at specific time periods so as to
meet strategic objectives.

Suppliers in the SCOPE model are the movement requirements.

Users are time expanded channelg. Time expansion refers to the fact
that a channel can move a given amount on each day. Nodes will be
created for the channel for each day.

Certain movement requirements cannot be moved on specific
channels. For instance, a movement requirement may not be air

trensportable, so they cannot use channels using air assets. There

"

-
vl

3
(4

R

A Ay

L

gy

Y

-
v

v ‘.‘11
LAl
. .

R
LA

X
LR ot]

, SOPY - [- - e LA, LY A A " - 0 ‘!“ % qr:' Y A 2 AR "F-’._ *"\-\:._ -.Y": f‘._‘-",",\‘..-“._:.._-. TG
A ', 4“’ ..“'r‘\‘ .l‘.‘h.', £ 8 0)‘\"',- \." 0.0‘ ARG nl.! o 4‘!‘. W <L e, .t AEHE&K L .!.i e Y- " B -

are many other restrictions. There is a certain delay involved in
getting a movement requirement to the POE, so even if s movement
requirement can use a channel, it wmay not be able to use it on
certain days. Arcs are created from each movement requirement to
each time expanded channel node that the movement requirement can
use. (See Figure 2-2).

The interpretation of flov on an arc from movement requirement M
to channel C on day D is that amount of M will arrive at the POE
associated vith C on day D and vill use the assets associated with C
to be transported to the POD of C. From this information, it is
possible to determine vhen M will arrive at its final destination.
The cost asscciated vith an arc depends on the value of getting M to
its fineal destination at that tiwme.

There are wany vays of assigning costs to the arcs, but one of
the most flexible involves time wvindows. Each movement requirement
has a vindov of days in vhich it is desired to arrive at its final
destination. 1If it arrives at its final destination vithin its
vindov there is no cost. If it arrives ocutside its vindov (either

early or late) then the cost is a function of hov many days early or

'late it arrives.

The final complication is in hov to measure the aize of a flow.
There are tvo types of chnnﬂel.: sair and sea. The major limitation
on the amount an air channel can move is weight (STONS) of the
movement requirements. The major limitation on the sea channels ia
volume (MTONS). Each movement requirement has a veight and volume,
and the relationship betveen these tvo values depends on the movement

requirement.

To model this, the weight of the movement requirement is taken as

. [SRS
-

‘ " M.R.-Y . day 1

Channe

. day 2

M.R. 2 .
day 1
‘ . day 2
M.R. 3
! '. day 3
day 1

<%

Channel

".
’
P'
5\'.:- M.R. &
&
". day 2
"
1.R. 1 can use Channel 1
‘“© M,p. 2 can use Channels 1 and 2
[M.R. 3 can use Channels’ and 3 ‘ .
u.R. & can yse Channé . . day 3
A Y

ey
"
Figure 2-2. §COPE Basic Model

rIPIAS 2

k&ﬁ-&ﬁﬁi&%ﬁjﬁ%ﬁiiﬁm

NS
wiAT~L

> .

FExY IR

N2

P

-
»

‘.

w 223

its size. If the movement requirement is sent by an air channel, no

conversion takes place. If the movement requirement is sent by a sea
channel, the wveight is converted to volume by a multiplier on the
arc. For instance, if a movement requirement veighs 20 STONS and has
volume S0 MTONS, arcs to air channels vill be pure arcs (have
multiplier one) and arcs to sea channels vwill have multipliers of 2.5
(=50/20). Figure 2-3 provides the complete netvork for the example.

The netvork creasted, called the MRMATE netvork, has significant
structure. The major features are:

1) all nodes are either suppliers or users. In fact, this netwvork
is a transportation netvork (see Bazaraa and Jarvis [1)).

2) wany of the multipliers are one.

3) all arcs out of a movement requirement have one cof tvo
multipliers.

3) many arcs have zero cost.

4) the arcs have no capacities.

The largest problem that could occur in practice is estimated to
have approximately 2000 nodes and over 500,000 arcs. Furthermore,
these problems must be solved repeatedly in a very short amount of
time.

The MRMATE model will be used as an example of the type of
specializations possible in implementations of generalized netvorks

in the remainder of this report.

11

-

o= TG P o1 . r Y PR R p#b 5 -
Jn A RPN X RN NS M e i D e T At T PR e R

P AL AT N Nt
Lo C L LA DR LA AR TRIN S R

&2 &3

'’

;

-,

O

3
'I X
-

V-
;'_ -.; -

oy e 2

"

Xy Ot
R A)

MPl:
MR2:

MR3:
R4

=100

-300

~200

-~400

Weight
100

300

200
400

QXX

ia sk AVe Slif i aid o)

TR YT W T

i 2 o Ak as At b Ah 4 A AL Aot AR ARE Ao

(0 v\)
0,1)
2
003)
P
%3,
0,2) —
3
(¢] 2)
-1
. (1,2,5) ‘
(2,2.5)
Volume
500 label on arcs: (cost,multiplier) |
900
400
1000

Figure 2,3,

12

—— . -

Lot)

N TN NN B T TR AT " A i) ’l - - .~_\
Tl 2 :‘fi‘.'fh RS AL LI 2"."5“‘04‘. Sl Hatittntts! .*!v.‘.r.‘.o',‘!' A ,‘A AT

SCOPE Generalized Metwork Model

[

®

éa

- L

l:o",b

S0

-so Channel
(Air)

50

300

BOb Channel{

|
|
I

300

600

600 Channe
(Sea)

600

‘q’ﬂ’# o

rey

e

P |

s

*
-

I e g A B
AR A5

Py

3
¥
¥

T

,l"r.l'

2atals

oy

e

3.0 SOLVING GENERALIZED NETWORKS

Since the generalized netvork model is so useful, it is important
to have a computer solution technique that will find solutions
quickly. It can be showvn that generalized netvorks are a special
case of linear programming, so that any technique to solve linear
programming, like the Simplex wmethod, can be used to find solutions
to this model. But there are disadvantages of using these general
purpose algorithms. The best known methods take too much space and
are relatively slov. Fortunately, the Simplex wmethod can be
specialized so as to take advantage of the aspecial structure in a
generalized netvork. The specislized simplex wmethod solves

generalized netvorks quickly using little space.
Section 3.1 Linear Programming

Linear programming is the most fundamental optimization wodel in
operations research. Bazaraa and Jarvis [(1] provide an excellent
introduction to this field. The linear programming model employs the
optimization of a linear function subject to a set of linear
constraintas. A linear function is a funcFion that is of the form:

Ci % + Co % * 000 + Cu xa

vhere each of C,, C3, ... C,o are constants

and x,, X, and x. are the-vnriables.

A linear constraint is of the form:

Ay %3 * Ag X9 * s.00c * Ay %X. = B

vhere A;, As, ... A, and B sre all constants.

When a generalized netvork is represented as a linear program,

13

s o KN 4 A n KXy A

ot T A O D0 T LA LA Y e gt e Y Y OO € A AT N

LA 2.4

m

| A

variable x, is associated vith each arc. This variable represents

o f,l’.'
' 0

the amount of flov in the arc.

There is a linear constraint for each node. This constraint
.l controls the amount of the flov that exits or enters the node. The B
ié value for the constraint is the supply or demand for that node. The
constraint forces the net amount of flov at a node (including the
g& self-loop), to be the supply or demand for the node.
Every arc is asssociated vith just tvo nodes: the tail and head
§§ nodes for the arc. This implies that the variable associated vith
3E each arc occurs in at most tvo constraints in the linear program.
- Self-loops occur in only one constraint.
§§ In matrix terms, each constraint represents a rov of the
~, constraint matrix and each varisble represents a column. The
Q: preceding srgument indicates that there are at most tvo non-zero
ii elements in each column of the constraint matrix.
Because the definition of generalized netvorks in this report
E; allovs just a single multiplier for each arc, one of the non-zeros of
each column will be the multiplier on the arc. For arcs that are not
!! self-loops, the other non-zero element of the column will be -1. The
23 multiplier vill be in the rov associated with the constraint on the
! head of the arc. The -1, for non-self-loops, is associated with the
; tail of the arc.

Every variable is assumed to be constrained to be nonnegative.
aﬂ There are standard "tricks" to transform variables not of this form
. to the sssumed form.

Since the arcs (variables) have capacities, it is necessary to
treat this problewm as a linear program vith upper bounds. These

upper bounds are linear constraints themselves. Due to the simplicity

14

—~
{:A-’J

3

‘t‘*?s
¥t A

24

(= Ade

]

S

»3

s

hY

Lt
LA
YLt

- T EmMELRE g BT ERE FTT s TR TS R TR AR EREAA S EAEAME ST E s s e

of upper bounds it is possible to treat them implicitly in the

solution algorithna.
3.2 Solving Linear Programs - The Primal Simplex Method

There are many wethods for solving linear programs. The wmost
videly used is the primal simplex wethod. This technique has proved
to be efficient, both in execution time and computer space.

For every linear program, there is an optimal solution with no
more than one non-zero variable for each constraint. This is
referred to as a basic optimal solution. The optimal non-zero
variables form a basgis. A basis is any set of variables with the
folloving properties:

1) There are not more variasbles then constraints in the linear
program.

2) No column of the constraint matrix for any variable in the
basis can be written as a veighted combination of the columns of the
other variables in the basis.

3) There is a feasible solution to the linear program using just
the variables in the basis.

The steps of the primal simplex moghod are as follovs:

1) Find an initiel basis.

2) Find a variable, not in the basis, to enter the basis. If none
exists, STOP. .The current basis is optimal.

3) Find the variable in the basis that vill leave.

4) Update the basis

3) GOTO Step 2.

One iteration of steps 2 through 4 is called a "pivot®.

15

.- »
E T &

L
]

e

L=

3

[4
Ey

= AR v W

0
v

S |

c ety
Ay

¥ v =
St
-~ A

w’

Bl

]

Step 1 can be accomplished in various vays. The simplest method
is to take the 'slack® and "surplus®" variables that often occur in a
linear program and use them as the initial basis. Sometimes
artificial variables must be added vhere "real® slack and surplus
varisbles do not exist. These artificiesl variables are given a high
cost, so that the optimal solution will not employ any of them.

It is often possible to determine a set of variables that creates
a very good solution. This usually reduces the number of pivots
required to reach optimality. The time to find a good starting
solution, called an advanced start, muest be short enough not to
offset the reduced computation time for the rest of the algorithm.

Identifying a variable to enter the basis is accomplished by
determining the change in objective function if the variable is
increased by a small value. This change is called the reduced cost.

Increasing the value of the variasble entering the basis will
change the values of the current basic varisbles. One of these
variables will be the first to reach zero. This is the variable to
exit the basis.

The nev basis consists of the cld basis, wvithout the exiting
variable, and the entering variable. Various values must be updated,
including the nev variable values and the reduced costs for variables
not in the basis.

The primal simplex method can be adapted for upper bounds on
varisbles. Rather than treat the upper bounds as "normal®
constraints, wvhich would be inefficient, the definition of basis is
slightly redefined. A non-basic variable can nov have value of
either zero or its upper bound. A basic variable can have any value

betveen zero and its upper bound. A non-basic variable at its upper

16

T ey e e S N g 3t e R RO

.=

bound may enter the basis if decreasing its flow slightly iwmproves

B

X

* the objective function. When the basic variables change value (Step
g 3) one of them vill reach its upper bound or zero first. That

B variable will be the exiting variable.

i

AL

i g

~x
L'

4.0 STORING THE BASIS

The main reason that a specialized simplex wmethod is faster than
a general purpcose simplex method for generalized netvorks is that the
basis has a special structure. This structure makes every simplex
computation easier. This section defines the basis structure and

gives data structures to efficiently store it.
4.1 Basis Definition

A basis in linear programming consists of a set of columns, one
for each rov, wvith the property that no column i- a veighted sum of
the others. In a generalized netvork, columns correspond to arcs, so
the basis is a set of arcs. Rovs corrécpond to nodes, so there is
one arc in the basis for each node. The final property, called
linear independence, is more complicated to describe.

If a set of arcs is examined, the set of nodes vill be
partitioned into sets of nodes that are connected to each other (see

Figure 4.1). These sets are called components. Within a component,

the arcs can form cycles. Self-loops are treated as cycles of length

1. A component can have zero, one, or more than one cycle
(components A, B, and C respectively in Figure 4.1). It is possible
to shov that if & component has more than one cycle, there is at
least one arc that is the wveighted sum of the other arcs in the
component. Therefore, for a set of arcs to form a basis, it is
necessary that no component formed by the arcs have more than one
cycle. It is also possible to shov that if a component has no cycle,

some other component must have more than one cycle. Therefore, it is

18

LALe o da TWOW W IO LB e o S0 R i e s g i b e s ok o B el 2t B ANRE S S Rk A n Ao BB oV d b SR R B E,E BT LV KU RV

]

'y
1

LU
A

. s
[

- COMPONENT B
(One Cycle)

o

gt

(%,

COMPONFNT C
(Two Cycles)

COMMPONENT A
s (No Cycles)
;f;-s

Figure 4~1. Comnonents

r. 19

P T R R T DA R
R R A DL

b

e R "{r.‘-“'}':i" g j

2V e ® oa - et e w ey @ay Pas mat §a* Sl JEaS bRl el b E il e e - T

also necessary that every component have at least one cycle.. So
every component has exactly one cycle. A component with exactly one
cycle is called a “"one-tree®.

One further condition is required to ensure linear independence.
If the cycle is not a self-loo;; it is p;-sibi; for an arc in the
cycle to be a veighted sum of the other arcs in the cycle. A
necessary and sufficient condition for this not to occur is for the
cycle to have a cycle multiplier not equal to one. The cycle
multiplier is calculated as follows: Assign an orientation to the
cycle (clockvise or counter-clockvise). The cycle multiplier is the
product of the arc multipliers for those arce pointed in the same
direction as the orientation, divided bf‘the product of the arc
multipliers of those arcs pointed in the reverse direction as the
orientation.

To summarize, a set of arcs is a basisg if the followving
conditions are gsatisfied:

1) The number of arcs is equal to the number of nodes.

2) Each component has exactly one cycle.

3) Each component with a cycle that is not a self-loop has a
cycle multiplier that is not equal to one.

Some valid and invalid basis examples are given in Figure 4-2.

Since every multiplier in a pure netvork is 1, it is not possible

for a pure netvork basis to have a cycle that is not a self loop.

4.1.1 Specialization for the SCOPE Model

The arc multipliers in the MRMATE model have a special structure.

Since every arc connects a movement requirement to either an air or a

20

Wy

R N e et

label: tipli
(a) valid label: multiplier (b) valid

2
-

¢« X_t
L
.

F‘t" l(-';'

YAS,

N

. (¢) invalid (no cycle) (d) invalid (two cycles)

Figure 4-2. Valid and Invalid Basis

. L
LAt (o S TN

"~

label on arc: multiplier

(e) invalid: cycle multiplier of 1

~
-, ',."
-~
b‘ -
-
SR,
La A
i

Figure 4-2, Continued
! 22

',"-*’-..-“-.,\-." . » L R NLIPE PRI AT R S,
. R N ~

a8 VY, W,

NS

A

| PN

sea channel, the arcs have multipliers of either 1 or the conversion
factor for the movement requirewment. Given the vay that cycles form
in the MRMATE model, it is easy to shov that if a component has Jjust
air channel arcs or just ses channel arcs, then the cycle associated
with the component must be a self loop. In other vords, if a
component has only one type of arc then ‘hat component has the same
basis structure as a pure netvork basis. Since pure netvorks can be
sclved more efficiently than generalized netvorks, it is likely that

some advantage can be taken of the basis structure in this case.

4.2 Storing the Basis

Since the basis for generalized netvorks has special structure,
it should be possible to store the basis 15 an efficient vay. There
are tvo important factors in storing the basis: storage space and
computation time.

The following sections outline a method of storing the basis,
called the linked rooted tree method. This wmethod is siwmilar to that
of Brovn and McBride (2], but differs in some important wvays.

The linked rooted tree method is based on the data structures
used for pure netwvorks (smsee Xennington (351). In this wmethod, nodes on
the cycle are seen as roots for trees consisting of nodes not on the
cycle. These trees are then linked around the cycle (see Figure 4-

3). Each component contains one or more trees together with the

linking cycle.

4.2.1 Predecessor Structure

23

=Yy a_ L ad tals AN LAl Lol -Ladl Rl il b AN i e
T TR TRy " w

| 2

.y
ST

L 4

o Figure 4-3, Linked Rooted Trees

s W7 R - W AT W

The most fundamental operation required for the manipulation is

-
L 2

to "go up" the tree. (Here the cycle is considered “on top" of the

p SO W,y
] }'l.q g F i‘?

B tree). This is required in determining the arc to exit the basis,
'_ for the arcs that must be checked are exactly those above the
: 1% endpoints of the entering arc. It is also very useful vhen
Y . determining the nev basis (Section 7).
‘ {'! For any selected node not on the cycle, the predecessor (PRED) is
% oy defined to be the (unique) node, such that there is a basic arc
L I; connecting the tvo nodes and PRED is closer to the cycle than the
“i :';3 selected node. r
;§ ?- For nodes on the cycle, an arbitrary orientation of the cycle is
:(C‘ selected. The PRED of a node on the cycle is the node just before it
¥ X on the cycle using the selected orientation. The PRED of a node on
S S the cycle is also on the c}cle. If the cycle is a self-loop, the
. PRED of the cycle node is defined to be itself. (See Figure 4-4).
’2 The PRED provides the only method of moving from one cycle node
4 Eé to snother under the linked rooted tree system. Also note that there
is no connections betwveen components, for that ability is not
ro ! required for the simplex calculstions.
A
) 4.2.2 Thread Structure
RN
¥ . The thread structure (THREAD) provides a mechaniam for visiting
:; Eﬁ every node in a tree. The order in wvhich the nodes are visited is
; > defined to be the "preorder traversal" (see Kennington (S)). This
% order has the property that if node X is on the path from Y to the
; g& root then node X is visited before node Y. Note that the THREAD is
3 ' only wvithin trees, not betveen them. (See Figure 4-5).
b %
b 25
-
5
O

|
-

- re DN T L o LA P o o P P N L AT o T e U i BN g) (3
""'ﬂ‘b'-‘.'ﬂ.-':'.'t'!'t‘.':'!'-"'t‘. o 7) ~'a e g iah .‘i . AT AR At *, PN 7, 5 e Sy NV O L)

wwr e PCETE T T P R W e W W W WO RrT W R W WY TRy ey Ty T

Node

WL WN
O = o
N Q a]
)
o

W W W N N

w

¥
!
d

' W e | -
r
-! .“ 3

ﬁ Figure 4-4, Predecessor Structure
26

-

-
-

. L3 L M R I - PP TR 4 -t VR TP . .- e “w € « - RN e " N » W Phi "
AN A g B e S R R C R R R S LA RN R ORISR e, ASCRTCRTRER TSRS
e M A AN 3 B N N L e A Ry g S A A G R O NS R N '.9 !

- - T R T W TR € = = > 7 7

AR -7 o & & ¥ T~

., .

)
-l
[

o

4 = 5B

he 4

¥

| S8

- »
L‘.’L‘ &'

& W

%

- a3
'f\' N

R |

The THREAD is required by the basis update routines to determine
those nodes vhose duals and LEVELs (Section 4.2.3) wust be updated.

It is in this structure that the linked rooted tree wmethod
differs from that used by Brown and McBride. In that report, the

THREAD vas defined traverse around the cycle in the opposite
direction of PRED.

4.2.3 Level Structure

The level structure (LEVEL) gives the "distance®” of a node to the
cycle. Nodes on the cycle have a LEVEL value of zero. This

structure is required by the routine to find the exiting arc (Section

6). (See Figure 4-6).
4.2.4 Reverse Thread Structure

The reverse thread structure (RTHREAD) is simply the inverse of
the THREAD structure. This permits the visiting of nodes in reverse
order. Typically, this structure is only used to make the basis

update more efficient. (See Figure 4-7)

4.2.3 Arc Information Structures

Some information on the basic arcs is required to perform the
simplex calculations. This includes the CAPACITY, arc multiplier
(HMULT) and current FLOW, to determine the arc to exit the basis; the
arc COST, to update the dual variables; and the arc number (ARC) to

record the optimal solution. If the inforwmation on all arcs (basic

27

. > - -‘.-"J-" “u : e
VN I O NN S O N N I 1t B el

e
—
~.

e e
/
~

Mt
FUNRE Sy)

¥
Node Thread
") o
: 2 5
3 . 3 12
. 4 11
' 5 2
- 6 7
N 7 1
N 8 8
! 9 9
o, 10 10
T
12 4
- 13 13
'I':
?-

LW
Ly

Figure 4-5. Thread Structure

'! 28

W d TR e a™alm™ aTany €y -
L P Rl A N S P P T e P I
&Q;&A-»tczd..t-.ac.::‘.o\.«:&_h v

T N

o 0 v o YTy O T T O T O L TOW T LR WY !m“ﬂﬂ*\'vnl—~-v‘-'\.w—"ﬂ

)

¥ “
M]

LR

[) %
s
R})
)

+
-

»
s

: O © ®
¥ © O

2"y

P
v

e |

.:' E‘E Level O

LY 8

;- © O & @@

X

:c E’:‘ Level 1
o

@ Level 2

S e T T r.';”

4.,
L I
3 Yo Node Level
& 1 0
. 2 0
LR 3 0
" 10 2
' 5
Sy 1
:u ,)‘: 6 1
- 7 1
0
-
4 ".? 9 0
e 10 0
:‘ 11 1
: - 12 1
T+ 13 0
4
-
/
)
[\ A
R ..
h »
¥
Al
" b, Figure & 5. Level Structure
3 ' 29

o7 54 %\Ym LI S e) YA Y .r”:(-,'- -',,-. -ﬁ,q-’.:,-.- - o
! u', o.- 3, ¥ "{"'(*""‘('\" ‘\-'3' L "\" ‘. Ry

< ~..“' LAY

oy n"' » T ".'v' AR \'('i;"v. '\'}.\{ *’(".-f"f;'-"\ ‘.:-‘,'-_.?'(.1
RIS RIR IR a)

) L) -

s

SE
2
AN
N

R ¢

=0
&
ol
A

o |

~

~
- ——

"Ll
555, 45
oy

| N
FEN o
~ ?1

o* i

iy Node Reverse Thread
L X , 7

18 2 5

h‘ ?: 3 11
) ". 4 12

», -~ 5 2

o~ ; 6

3] v

o 8 8 L
~

P 9 9

ﬁ e 10 10

£ 5 11 4

) 12 3

e 13 13

D

"

e

o
L] ‘.-
. Figure 4-7., Reverse Thread Structure
3 .
!U 30
~
)

T S LR T B L Ty PR, R L T A AN MY
: l,‘ s .!. * .l).M,) '». A ‘.. Sy

T T A ST AL L L T L O L L e L LR et e A
\ A " v o A i 3 - n » - . . -

R “ ';,. "‘i} WJ

..
«
)

LI
FRE S

wd

| WA

v

s

Y e A e et A
" - ALE AN
IR AL PCIR PR K N RN

and non-basic) is available, then it is only necessary to store the
ARC value explicitly. Ae Section 3.1 will shov, hovever, for large
problems it is necessary to have only a limited amount of arc
information available at any given tiwme. Therefore, all of the above
basic src information must be stored.

The information on the basic arc that connects NODE and
PRED(NODE) is associated with NODE. Since it is not clear vhether
the arc begins at NODE and ends at PRED(NODE) or the reverse, the ARC
value is given a sign depending on the orientation. In the forwmer

case, ARC is positive; in the latter, ARC is negative. (See Figure 4-
8).

4.2.6 Dual Value Structure

The dual variable (DUAL) for easch node is required to deterwine

an arc to enter the basis. Therefore, the dual for esch node is

retained at all times.

4.2.7 Cycle Nultiplier

The cycle multiplisr (CHULT) is defined as follovs: give an
orientation to the cycle; the cycle multiplier is the product of the
arc multipliers for arcs in the same direction as the orientation
divided by the arc multipliers of those arcs in the reverse
direction.

CMULT is defined only for nodes on cycles that are not self-
loope. CHNULT is the same for all nodes on the same cycle.

The cycle multiplier can be thought of as the amount of flov that

31

._. LN '\-.\‘.‘-(\ . "".\

OGILN

- ” P A IR A T Y .
TR Cateda T

Lt v TR T W T OO WON 7OW PO oD e T O T TN TR TR T T TR T T T TR AN TR AN TATR T ETE TN T AT ATV TR R R AN

At b

e

o

*
p)

P
»
o
Vata

3

ry
P

o«

n-

label on arc: arc number
direction on arc: predecessor

. Node Arc
15

13

1

2

3

4

5 -3
P 3
) 7 -2

8 22

9

R -6
n'. 10 -9
11 -10
o 12 -11
e 13 -27

Figure 4-8. Arc Structure

32

. S T N T ™ M N N W e R W e N) e, AR LR T T AN -.-.-.--‘_-.-...'_-‘,,. .
A R AR TR A 1, A T 1 vty 1 T N R T Bk RS RS RS o

b vill result if one unit of flov is sent around the cycle in the given
orientation. In a valid basis, CHULT cannot be one.

. CMULT is needed to determine the arc to exit the basis, and to

. update the flovs. Because of .the number of multiplications and

- divisions required, this is a very time-consuming number to

' calculate. Fortunately, this number must be cslculated just once for

" each nev cycle created. So pivots that do not create a nev cycle do

M not require the calculation of any CNULT values.

—_mmmmww—rww-uvu-v~-~. s = T _T

i
|
i
b
)
Y
)
)
:

wF:

S. Handling Arcs

In general there are far more arcs than nodes in a netvork model.
Ny The handling of the arcs is therefore critical to decreasing
computation time and storage requirements. Despite the large amount
of arc data, very little data is required for any individual pivot.
This permits the storage of the arc datas ocoutside central computer
memory, normally on a high speed mass storage device.

Methods for handling the arc data was reported in detail in (84-

09]). The folloving sections reviev the conclusions of that report.

3.1 Choosing an Entering Arc

The priwmal simplex method provides flexibility in the choice of
arc to enter the basis. The only property the entering arc must have

is that placing a swmall amount of flov on the arc vill decrease the

objective function value. It is not necessary to select the arc that
vill yield the greateat decrease in the objective value the wost.

Given the current dual values, it is essy to determine the effect
of making s small change in the current flov of a non-basic arc. If
the arc currently has no flov on it, incr%aaing the flov by one unit
vould add the following amount to the objective function:

MULT e DUAL(HEAD) - DUAL(TAIL) - COST
vhere the arc in question is from node TAIL to node HEAD and has
multiplier MULT and cost COST.

If the current flov on the arc is the capacity of the arc, then

decreasing the flov by one unit would add the folloving amount to the

34

< 1 - -_-,,1 -‘- " \-4.,‘ _'-:,. '._-;.:-"-.‘.'. .,
Pl Sy N TV 2‘;"5\3 \(\'3&"\" NI AN N AN

. objective:

= (MULT e DUAL(HEAD) - DUAL(TAIL) - COST)

-

It might not be possible to change the flovs by one unit. Some

arc in the basis could reach one of its bounds before one unit of

AP

flov is placed on the entering arc. Conversely, it might be possible

] to change the flowv by more than one unit. The actual amount of

d change is deterwined in Step 3 of the primal simplex algorithm.

Ei The above equations are referred to as the reduced cost for the
B arc. If the reduced cost is negative, the objective value would be
ii decreased if the non-basic arc vere to enter the basis. Non-basic

n arcs vith negative reduced cost are eligible to enter the basis. If
~ there is no arc vith a negative reduced cost then the current

2 solution is optimal.

" Generally, there are wmany arcs that are eligible to enter the

i basis at each iteration. It is necessary to choose from among those
. possible. For inatance, it is possible to calculate all of the

31 reduced costs and choose the arc vith‘the most negative reduced cost
. to enter the besis. This, generally, vill have fever pivots than

i other methods but the amount of time required to calculate all of the
Ej reduced costs wvould be prohibitive.

a Another alter.aative is to calculate the reduced costs, one at a
1i time, and choose an arc to enter the basis as soon ss one is found |
:ﬁ vith a negative reduced cost. This will minimize the amount of time
e to calculate reduced costs; but 1t.v111 cause many pivots which

i isprove, only wmarginally, the objective value.

i In practice, tvo methods are used to choose an arc to enter the
é basis. These methods are referred to as the fixed page wmethod and the

- candidete list wmethod.

35

“~

.

AN

A R e TS e e A ATt T e e N T e N T T T T T L T TN T e e L e T L T e T T T
R P Ay AP B o T e e o e A e S Tt M

TR 5 34 S x5

o ot gl B B {

~re

ais !
L

M,

/I_‘.('_

.
N S

lat 2o

YN T W T W LW LY TR AR LT A T e e
a4 - av aaw So. g aas Aa- de - anc s~ e - g s et et dhet ot R il i - Ea -

S5.1.1 Fixed Page Method

In the Fixed Page method, the reduced cost for a fixed number of
arcs (a page) is calculated at each pivot. The arc with the most
negative reduced coast is then selected to enter the basis. If no arc
has a negative reduced cost, then s nev page (of arcs) is used. The
page size (number of arcs in the psge) is important. Too swall a
page vill cause too many pivots; too large a page vill cause too much
time for the reduced cost calculation.

After each pivot, a decision wmust be made wvhether to uase the sanme
page of data or to obtain a new page. One method for making this
decision is to provide a re-use factor, giving the maximum number of

times a page can be used before a nev page must be selected.

5.1.2 Candidate Ligst Methods

If arcs from a variety of nodes are exsmined, then, vhen one of
thewm enters the basgis, generally, it will not effect the reduced cost
of many of the other arcs. It is therefore possible to examine only
a subset of arcs, called a candidate list. The firast step is to
create a list of arce vit% a negative reduced cost. The arc vith the
most negative reduced cost is then selected to enter the basis. The
reduced costs of the arca in the list are then recalculated, and the
next src to enter the basis is selected from the list. After a fixed
number of pivots, the candidate list is reforwmed.

Tvo parameters are required: the candidate list size and the

number of iterations before reforming the list.

36

‘lf (i‘

D e
w‘w-u-‘ru-rwnw-v\u.vlcnwsxuﬂv-\I-'""ntn'r.w +a s oi B v pnk gl alh abh add bbl abl g .

3.2 Storing Arc Data

In both major methods for choosing an entering arc, only a small
amount of arc data is required at any given time. Information on
arcs in the basis is alvays required, but only s small number of non-
basic arcs are needed. In the fixed page method, only arcs in the
page being examined are needed. In the candidate list wethod, only
arcs in the candidate list are required.

This suggests maintaining arc data on a high speed mass storage
device (e.g. hard disk on a microcomputer). Only basic arc
information and a swall number of sesrch pages is maintained in core.
When nev arc data is required a page of arcs can be read in,
replacing the previous pages. The amount of data remains constant
vhile the actual data is constantly changing. This is called the
*in-core/ocut-of-core" methaod. |

Some method is needed to store information on the non-basic
flovae. The non-basic flovs are either zZero or the arc’s upper bound.
The various possibilities vere given in (3]. If there is a large
number of arcs then the information on the non-basic flovs must also
be stored outsiie central memory. This is slov, but it permits even

small computers to solve extrewely large problems. - *
S5.3 Specialization for MRMATE

The number of arcs in a MRMATE model can be very large. The
largest problems can have more than one-half of a million arcs.

Problems of this size require the in-core/out-of-core wethod.

37

L

LY

OGN

)
Al

o "‘:I/ 'Jl').'.f.'

rd X

-' *
’.
..

One adventage of the NRMATE problem is that the structure of the
arc costs is known. There vill be wany arcs vith zero cost. These
arcs are likely to be in the optimal basis. Therefore, it seems
reascnable to enter zero cost arcs as often ss possible.

The remaining arcs can be separated into tvo classes: lov cost
and high cost srcs. By separsting the arcs into three different
files (zero, lov, and high cost files) arcs vith zero cost can be
preferentially entered, vithout calculating reduced costs for low and
high cost arcs. To ensure optimality sll the arcs must be exawmined;
hovever, more time can be spent vith the zero cost arcs.

Slack and surplus arcs are also very important in the solution
process. These arcs should be examined wore ocften than other srcs.
If the "vrong" slack and surplus srcs are in the basis many pivots
might be performed unnecessarily. These arcs should not be kept out
of core. Information necessary to generate these arcs should be

available in core and their reduced costs should be recalculated

frequently.

g

Loga- au Ba_gh oA oo A R B o A d A Sod Sok her i kol PRl STy T YU RIS NERE T TN TR A LW e e W e TR e g e ,w

|
-x I
o .:.
o 6. Finding the Exiting Arc
- .
I |
A < |
LRl e In the simplex method specialized for generalized networks, only 1]
W
VoY
:h‘i.'c N a limited number of arcs are candidates to exit the basis during any “
O ‘
- 9 pivot. The rapid identification of these arcs is a reason the
3R
::J"E v specislized method is more efficient than the simplex method for
Moy
f§ :f; general linear programming.
N v ‘
For any node, NODE, define the "backpath®" of NODE to be those
.
. A
3’_:: :-j arcs betveen NODE and the cycle for the component that contains NODE,
2N
:’-'f‘:’_,‘-‘g ., as vell as those arcs on the cycle. 1In other vords, the backpath for
ooyl o |
(» = NODE contsins those basic arcs vhose corresponding node can be \;
f-j - reached from NODE by use of the PRED structure only. For the
Falt r !
J._‘. entering arc number ARC, the only arcs to change flov are those on
P
' ﬁ the backpaths of TAIL(ARC) and HEAD(ARC). Figure 6-1 shows the arcs
EA
'-';j'_' . that wvill change flov for various combinations of HEAD(ARC) and
’-{ ,
- » L
’\".:{‘; & TAIL(ARC), referred to as HEAD and TAIL respectively.
s,
) a If a single unit of flov wvere placed on the arc entering the
::,'._" basis, the flovs on the arcs in the backpaths are the only ones wvhich
Wad .-
g,_‘: :-'E wust be updated so as to keep the net flov at each node the sawe.
‘.I
. - For instance, the arc betveen TAIL and PRED(TAIL) wust provide one
Ry .
"{ 1 unit of flov at node TAIL. If that arc is orfented from PRED(TAIL)
Y0
:’": VY, to TAIL and has multiplier of MULT, then the arc betwveen
) L5
M
o - PRED(PRED(TAIL)) and PRED(TAIL) wust provide 1/MULT units of flow at
L ¥
'sr:; 'f,' PRED(TAIL), and so on (see Figure 6-1).
'nJ] cu
)
:g This calculation is equivalent to determining the updated column
"y 19
_:' ﬁ in linesr programming. With this updated column, it is possible to
¥ "Q‘
}:4) determine the amount of flov by which the entering arc flow can
o j-:
I 39
'l..l .
i
v R

B R R e e ‘Hﬁ‘lﬁk’ﬁﬁﬂ

vy TTTWOWYTw A £ b R 2 Bof aah b aaf 4ol al el ol tall Al -l Al -A8ec-dle Ala ALe hite h8a Ate Bl Se iR S E Ll e i

®7

oy
AL

PRED (PRED(TAIL)) () 1

*
MULTl MULT2

53

A

*y "y
-
N

MULT

L

~
"4'

A

K

PRED(TAIL) 1

HULTl

Q
O——0
\

UNITS OF FLO'Y REQUIRED

-
»

.g:l:

)

> |

HEAD

oy

TAIL
ONE UNIT OF FLOW REOUIRED

ye
g
LR

Figure 6-1. Flow Required at Nodes

40

“e
-t
-
'

UNITS OF FLOW RENUIRED

"I(-\.. .\}:- }-\-.
' AN AN

N LT
EAEAE
-

L A |

4

T4 '®e wl & W e ® ® . T Y

change before some basic arc reaches one of its bounds. The first

src to reach one of its bounds is the exiting arc from the basis.

6.1 Calculating the Exiting Arc

The determination of the exiting arc involves tvo steps: the
development of the updated column snd the deterwmination of the
maximum flov change on the entering arc, ARC (before s basic arc
reaches one of its bounds). These tvo steps can be performed
simultanecusly for each node. For simplification, the presentation
here vwill separate the process. There are several cases to consider.

The first case assumes that the backpaths from TAIL and HEAD are
distinct, iwplying that TAIL and HEAD are in different cowmponents.

If the multiplier on ARC is MULT then placing one unit of flov on ARC
vill require one unit of flov st TAIL and will provide MULT units of

flov at HEAD. The sign convention of a negative number for a demand

and a positive number for s supply vill be sdopted. The value of -1
for TAIL and MULT for HEAD is called the requirement.

Given the requirement at a node NODE, tvo pieces of information
are required: the update column entry for the arc betveen NODE and
PRED(NODE) r.nd the requirement for PRED(NODE).

These values depend on th& orientation of ARC(NODE), the basic
arc betveen NODE and PRED(NODE). The folloving algorithm calculates
the entry in the updated column (UP_COL) and updates the requirement
for NODE (REQUIRE) to be the requirement for PRED(NODE).

1f ARC(NODE) < O then (earc oriented from PRED(NODE) to NODE)

REQUIRE := REQUIRE/MULT(NODE);
UP_COL(NODE) := REQUIRE;

else
UP_COL(NODE) := -REQUIRE;

41

APPSR R T o R R ATE (N0 50, Ot N C N
" ;;;:;}I¢xr’(:;?e:x}L}¢_c o :-.-xa; 2 ‘H‘h‘;l mad

WV‘W“‘I'-':VUW.----—.~~ R

-+ REQUIRE := REQUIRE ¢ NMULT(NODE);
'y endif

The process is slightly more complicated vhen s cycle, not a
o self-loop, is reached. The effect of the cycle multiplier must be

taken into effect. Briefly, the cycle is used to create or destroy

flov as needed. The CNULT value determines the rate at vhich flow
can be created or destroyed. The effect of the cycle multiplier is
that vhen the cycle is reached, REQUIRE is replaced by REQUIRE / (1-
g} CMULT(CYCLE)). The equations above can then be used for the arcs on
the cycle. These calculations can be carried out independently for
ié the backpaths of HEAD and TAIL vhen the nodes are in different
components.

For the second case, vhen the tvo nodes are in the same
ii component, the backpaths will coincide at some point. The updated
column is the sum of the updated columns calculated using the above
N equationa. If the backpaths coincide before the root cycle it is
possible to simply add together the REQUIRE values of the two
vl backpaths and continue as though only one backpath existed. 1If the
o value of REQUIRE is zZero (as it will be for pure netvorks) no further
calculations need be done; the rest of the arcs vill not change in
2 flovw. If the backpsths coincide only on the cycle, it is easiest to
proceed around the cycle twvice waking the necesaéry calculations and
& add together the resulting updated columns.
An example of these calculations is given in Figure 6-2.

Given UP_COL(NODE) it is possible to determine the amount o{

change permitted on the entering arc before the arc associated vith

NODE reaches s bound. Let INCREASE := 1 if the entering arc is

v
Ry N S

42
VLT o e IS 8 8 NS MR L e S P P

& vvv“"

P
-
7

- -
3

L X X
oz
S

. F-"
4
‘ ~,
oy
g
i 1
/ o0 3.7
[¢
;. c-,‘
| &
-1
e b3
) .\,
T
3
I 2, 3
S 2
s
. §
‘o
F
o
y TAIL 1,3 HEAD
b oy
; Z N label: MULT, UP_COL
IR
] -,
& <
i
J »
‘ <
‘e 2
)
N
K
z
N .
Y L.
b
"
' i' Figure 6-2, Updated Column
R < 43
N -. ki "“u" v.h'.'!‘n." X mm.n. My :,_:D‘Sﬁ';.ﬁ(" gl x{;ﬁ;" “M'\(o

',
'..l 7

r

o
-l
S

)
]
e N

s
.

)

’
o~

s

v >
A

”
L

ba
-

A

L |

Ba's

currently at zero flov and -1 if the entering arc has flov equal to

its capacity. The calculation of the maximum change is as follovs:

if (INCREASE e« UP_COL(NODE) > O) then
(* flovw will decrease on ARC(NODE) e)

MAX := FLOW(NODE) / UP_COL(NODE);
else

(e flow will increase on ARC(NODE) ¢)

MAX 1= (CAPACITY(NODE) - FLOW(NODE)) / UP_COL(NQDE);
endif

By taking the minimum value for MAX over all nodes vith a

changing flow, the flov change on the entering arc is determined and

the exiting arc is identified. If this value is more than the

CAPACITY of the entering arc then the change in flov ia the CAPACITY

of the entering arc and the exiting arc is the entering arc.

e ada aba ate oo g 4 asi A A ian koSl s N
T e oy

7. Updating the Basis

Given the src to enter and and the arc to leave the basis, the

....
"o
e final step is to update the basis structures. This update requires
g! updating the DUALs, the FLOW=s and the rest of the basis structures.
[] . "
e
4
-\'..)
> 7.1 Updating the Basis Structures
8{

b 7.1.1 Pivot Types

The linked rooted tree method has six pivot types, depending on
the relationship betveen the entering and exiting erc.
. Pivot type 1 occurs vhen the entering arc snd exiting arc are the
i. same. This occurs vhen flov on the entering arc reaches its upper
bound or zero before any other flovs reach their limits. In this
case, the basis remains the same, so only FLOWs wmust be changed.

When TAIL and HEAD of the entering arc are in the same tree, the

pivot type is defined to be either 2, 3 or 4. Consider paths from

|l‘;' P

the entering tail node to the cycle and from the entering head node
5‘ to the cycle. The firat node that occurs on both paths is called the
v % peeting node (MEET). The (common) cycle node is called CYC. The

)5 exiting arc can occur in three places: before MEET, between MEET and

CYC, snd after CYC. These three places correspond to pivot types 2,

~¢ 3 and 4 respectively.
. When TAIL and HEAD of the entering arc are in the same component,
& the pivot type is 2 or 5. 1If the exiting arc is on the cycle, the
3, pivot type is S. Othervise it is type 2.
2
45
VIO 0 € o faa et et LA

Wy
"a
o

vl‘

3

VAl

3 |

b 4

I\

v
B

ceed

| SN

3
<

'R
P

“x

W

¥ e & T WY E W N & T &5 7 7

If TAIL and HEAD of the entering arc asre in different components,
the pivot type is 6 if the exiting arc is on a cycle, and is 2

othervise.

Figure 7-1 gives examples of all of these pivot types.

7.1.2 Common Routines

The wmain advantage of the linked rooted tree wethod of storing
the generalized netvork basis is that the basis update routines
involve a limited number of tree manipulation routines. Each pivot
type uses these routines in a different wvay to create the nev basis.

There are five tree manipulation routines required:

1) Hang tree (HANG) : Takes tvo trees and a node wvithin the first
tree and attaches the second tree to the first belov the node.

2) Isoclate subtree (ISOLATE): Takes a tree and a node vithin the
tree and isolates the subtree belov the node by creating a nev tree.
3) Reroot tree (REROOT) : Takes a tree and a naode vithin the

tree and makes that node the root of the tree.

4) Reverse cycle reroot (REV_CYC_REROOT): Takes a series of trees
connected by PRED values and creates a nev tree consisting of all of
them in reverse order.

3) Cycle rerocot (CYC_REROOT): Takes a series of trees connected

by PRED values and creates a nev tree consisting of all of thenm.

7.1.2.1 HANG Routine

INPUT:
46
W R e g e TN e e e P e e T R PR N
-‘x‘.’:‘nh&.‘ln F,bj-ﬁi .A‘A' " SNSRI A N WYY e

LS|
V}-%\

]

v T T U g Ty TV ETTYT TTTE e T e e R . T T
\A AR, el ‘AR gl A sl ade - Al e L ata Al A int ¢
- i caR cam - aa mn. st -gd i i Sle Ale

I

¢ 3

by
x s

]

E g

|

P

rY-’
e

(3 (a) pivot type 2

“

U T

N

i {(b) pivot type (¢c) pivot type 2

i
P .
E’l (d) pivot type 3 (e) pivot type 4

Key: ..., entering arc
~—=exiting arc
_, other basic arcs
ﬁ Figure 7~1. Pivot Tvpes

47

) ath iy ald ate sul st ate il At

VT Tr T T T g T TN Y L e A - Lol L A
radia- o * et el el alkiradhh - i ol Sl J'.“-r'x".r'»...j

e aa o am e m e ade il a8kt Gd el e il et

Q
O

®

. . (f) pivot type 5 (g) pivot type 6

(h) pivot® type 7

wr Figure 7«4, Pivot Types (cont,)

LR el Bl B ol -aud - Ah 8 Mo M- 4-a R Bia Ate aie Bhe £he She -Bia Ahe -8l sesal Al Ui Sale Salat BT T ET W W RN el .. R e ' « < = = - 7 - ‘1,
Lo g = 2 Aot cnl vyl Sal

! f: ROOT: a node, not necessarily the root of one tree;

ﬁ TREE: the root node of another tree.
‘ OUTPUT:
s

Updated PRED, THREAD, LEVEL and RTHREAD for a tree wvith the nodes

of TREE below ROOT. (See Figure 7-2).

METHOD

(A) Find the final node in preorder traversal (LAST) in the
subtree below ROOT by following the THREAD values;

(B) LEVEL(TREE) :1= LEVEL(ROOT) <+ 1;
= NODE := THREAD(TREE);
is vhile NODE <> TREE do
LEVEL(NODE) :1= LEVEL(PRED(NODE)) + 1;
NODE := THREAD(NODE);
endvhile;

(C) TEMP := THREAD(LAST);
- THREAD(LAST) := TREE;
i THREAD(RTHREAD(TREE)) := TENP;
RTHREAD(TEMP) :1= RTHREAD(TREE);
RTHREAD(TREE) := LAST;
PRED(TREE) := ROOT;

Y
', -"

DISCUSSION:

-7

Tvo common programming structures are exhibited in this routine.

is In msection B, the LEVEL structure is updated for TREE. Because the
" THREAD is the preorder traversal, the level of PRED(NODE) is alvays
i; calculated before the level of NODE. Since LEVEL(NODE) is alvays
“y equsl to LEVEL(PRED(NODE)) + 1 within trees, the level calculation is
s

simplified.
{% The second structure is in section C. For roots of trees, the
" reverse thread of the root is alvays the last node #n the preorder
i: traversal. This wmeans that finding the last node in TREE is easy, as
¢ opposed to the last node belov ROOT. Section A is needed to find the

49

J D T SR S P i N ataw - A 5 - b N o N O oy e
'xt’-_",*-i"-ﬁ‘-’_;ﬁ"- , ,-_J‘)‘_.'.‘I~v,l, Cor L E A s ‘ LR ¥ ‘ R x

RS A S N VA W R I AP AN

-
S -
L
y
\‘
'
-t '_n‘
u .
:n .~
*
- »
]
L~
»
] ~ .
S
» T
[
b

LS
15
DY -
YIRS
L T
R LIS
k7 N i:‘l"
., o
Y -
- BEFORE HANG
s L 4
4
P
1 “ _‘-.'.
o« -~'
- Vo
& "-_
9]
-
s
L} T.
- .."
e oy
:l
4 .
S
., “,.
. ’n
‘ AFTER HANG (7,1)
r 7,
L4 hRd
, e
o
s .
v .

b
wen, -
h

N
Y
)T Figure 7-2, HANG Routine
‘
S

b [SO

A N N T O AN 5 3T
N "&W, AW, S WA T 5 L B N v

B A X Ao N

W EMATERE TRTTERANE TR R e R & _1—

E§ last node belov ROQT.
'
s 7.1.2.2 ISOLATE Routine
] l*. .
R
! N INPUT:

NEW_ROOT: a node in a tree
OUTPUT:
Updated THREAD and RTHREAD so that nodes belov NEW_ROOT form

a tree rooted at NEW_ROOT. (See Figure 7-3).

METHOD:

(A) Find the last node (LAST) in the subtree rooted at NEW_ROOT
by folloving the THREAD values;

(B) THREAD(RTHREAD(NEW_ROOT)) := THREAD(LAST);
RTHREAD(LAST) := RTHREAD(NEW_ROOT);
THREAD(LAST) := NEW_ROOT;
RTHREAD(NEW_ROOT) := LAST;
DISCUSSION:
Once the last node in the subtree belov NEW_ROOT has been

located, rethreading involves only nodes LAST and NEW_ROOT.

51

o LR R L 2t . et Y N b

b

AN {.;a :fsfafiimgu_si

BEFORE ISOLATE

AFTER ISOLATE (1)

Pigure 7=3.
52

\ &*% N x » LSS
N ey A s

Isolate Routine

.w\\..

SA

._-.-
" '-'\\,

»
>
) t
e -
b,) ;-
o
X
k) <
:':
l" P
7
k13
i)
.
:l] {' "
i X
W VA
L}
¥ i
Q)
» .‘J
. _'-l

i

-

7.1.2.3 REROOT Routine

INPUT:

TREE: the root node of the subtree to be rerocoted;

NEW_ROOT: a node in the tree rooted at TREE.
OUTPUT:

Updated PRED, THREAD, LEVEL and RTHREAD for a tree

consisting of the nodes belov TREE, vith root, NEW-ROOT.

Figure 7-4).

METHOD:

LEVEL(NEW_ROOT) := Oj
NODE :1= NEW_ROQT;
PREV := NEVW_ROOT;
vhile PREV <> TREE do
ISOLATE(NODE);
TENP := PRED(NODE)};
if NODE <> NEW_ROOT then
HANG (PREV, NODE) ;
endif;
PREV 1= NODE;
NODE := TENP;
endvhile;

DISCUSSION:

av7E T aET 8T a e "

(See

Using HANG and ISOLATE, rercooting a tree at a nev node is a

simple task. Each node on the path from NEW_ROOT to TREE is isolated

and then hung from the previous node. The temporary variable TEMP ias

required because HANG changes the value of PRED(NODE).

53

e vt e A e a e ar . e . LN e N W, Y -‘.‘\'.T.-. ‘n’""_'q"l‘"‘q"(*‘(f(f .‘ Ry |
22T N T N R A NN 30 AR AT oS e ")"" IR RS ON AN AT
¥y N - L & - - 4 R K

w

M RE il el Radl Ak Ak dad ctol ol Aot dod ol i dboll i kadiodiad el dol Al 2ol Rall _Ral o |

BEFORE

P
L N

l'.j

v

2

2

| 7l

Fax

After Reroot (7,1)

W=

s v

Tigure 7-4, Reroot Routine
!j 54

TN A S NN AT e e
LY RSO SR ORI

X

ot
."‘-

w5

e

~

* »

Il L
Ny

7.1.2.4 REV_CYC_REROOT Routine

INPUTS:

FIRST_TREE: First tree of the sequence to put together;
LAST_TREE: Last tree of the sequence;
OUTPUTS:

Updated PRED, THREAD, RTHREAD and LEVEL values for a single tree,

rooted at FIRST_TREE, consisting of trees rooted at predecessor
values frowm FIRST_TREE to LAST_TREE. Note that this definition
requires that the predecessors along the path from FIRST_TREE to

LAST_TREE be reversed. (See Figure 7-5).

METHOD:

NODE 1= FIRST_TREE;

PREV := FIRST_TREE;

vhile PREV <> LAST_TREE do
TEMP := PRED(NODE);
1f NODE <> FIRST_TREE do

HANG(PREV, NODE) ;

endif
PREV 3= NODE;
NODE 3= TEMP;

endvhile;

DISCUSSION:

This routine is essentially the same as REROOT, except that

ISOLATE has already been accomplished.

55

e . ettt R R M S N N e I T AL T i S S PN
SR AR N < ..’ e e T -7 ‘.."-_ ma T e e L AL O LA T

NI N N ti’ﬁ'ﬁm&ai“

R

Ny

e

-

g

L%
L

At

}I‘.‘-‘.

-

) Ay -
P

~

R AN STy

First Tree Last Tree

Before

After Rev-Cyc-Reroot (1,7)

Figure 75, RerCyc-Reroot Routine
56

s 9‘ NI .
)(‘\.h tﬁl.%m

7.1.2.5 CYC_REROOT

INPUTS:

e o - Ceme e

.
[4 ‘l
B

FIRST_TREE: First tree of the sequence to put together;

g LAST_TREE: Laat tree of the sequence;

” OUTPUTS:

;E Updated PRED, THREAD, RTHREAD and LEVEL values for a single tree,
- rooted at LAST_TREE, consisting of trees rooted at predecessor values
t5

from FIRST_TREE to LAST_TREE. This differs frowm REV_CYC_REROOT only

,'l-J’

in that LAST_TREE is the root instead of FIRST_TREE. (See Figure 7-

6).
- METHOD:
|

Reverse the PRED values from FIRST_TREE to LAST_TREE;

Eﬁ CYC_REROOT(LAST_TREE, FIRST_TREE) ;
L DISCUSSION:
;‘ Since CYC_REROOT reverses the PRED values, then by reversing the
;% PRED values before calling CYC_REROOT, the PRED values remain
- unaffected.

i

13

57

L

P e T S S e G 3 o o R

. tam [

PP

o . -

P

-y -

-

SN

PN

.
I

“,
x

N
A

First Tree

Last Tree

B o P PNt] LY

Before

After Cyc-Reroot (1,7)

Cvc=Reroot Routine

58

= T

i -vv—xT

.5 s a8 R S.b B A aal T 22D ok Bad 3ad i anslad Ao adutlhe aie e it S Rt h-ded Sl fld - Bel el Red Aol diie bk AR Lhro ki sk Al Akl A bkl ----.T

33
.

ma’

P

ESE

7.1.3 The Pivot Routines

,__,
2

\
i A 7.1.3.1 Pivot Type 1

P

Since the exiting and entering arc sre the same, no basis

A

structures other than FLOW wust be updated.

“]

|‘ Q"

‘ 7.1.3.2 Pivot Type 2

* f‘:

LA

ST o

%

ﬁ' o Pivot type 2 can occur in one of three cases: entering head

\‘A Y

1. and tail are in the same tree, they are in different trees but the
2 ;ﬁ same component, or they are in different components. In all cases,
P vl

") the exiting arc is on either the path from the entering tail node to
. . the cycle or the path from the entering head node to the cycle, but
.

)

SE not both. The LEAVE node is defined to be the node associated with
: o ’

3 & the path containing the exiting arc. The other node is called the
, ‘t STAY node (see Figure 7-7). EXIT refers to the node that is

I S,

,“. 4

#, associated with the exiting arec.

) -

\ g: The routine to execute a type 2 pivot is:

M

T & REROOT (EXIT, LEAVE);

SANEE HANG(STAY, LEAVE);

k¢

- "

S

fa P See Figure 7-8.

5 ﬁ?

L

y)

y i

o

e

i 59

- - “ e - . . g~ . : o R N N
% A T B R R A L et L A D SR S AN A L S
LALLMl Y . - B L) » Cht) B L i\ » g o) - » -

Ol ot il o)

P
¥

>

! e e

LML DT

b

o 2a.a"a a

-~y 4
»

T e a

T PSRN

,(A

™

44
&

MR |

s B

)

TaA

<

L4

x

St A
o,

° Leave

Before Pivot

KEY

- = - exiting arc

. « + entering arc
predecessor

Figure 7-7, Pivot Type 2 - Initial Position

60

'--'f.:.\' \--.'\\s\.'vf\\-'-"»' 7S PN R
TR L L A O o, AN N I IO NN RO NN

u*'\‘

oy
ARP N

%

»

LAY

TER e

~ = f
o o .
- a ¢
~ % »
- o™
o © n
of U «© ..V 3
[© [+ 1] F®
G m m o~y
s ,
A () \..‘
e >
o e
v .
% “ .
e “
(1]
Y4 1
o~
1]
M,.
—t
& o
[
>
-
-9
[+ o)
1
r~
Q
~ 5
°. >
w [
b
o]
o]
=
Y
[«
%
]
Y
LN
<

St M e B A s A v wbs Sanr b e e e RS

R R A S Y R W o W e S N W 2

I e a o e e 0 SN

mmmmmmmxmﬂvnrrwv e T T LW, ® T

7.1.3.3 Pivot Type 3

Pivot type 3 occurs vhen the entering tail and head are in the

RN

same tree and the exiting arc is betwveen MEET and CYC (Figure 7-9),

Denote the entering tail and hesd nodes as ETAIL and EHEAD.

=1

The algorithm for pivot type 3 is:

iy
T

NODE := ETAIL;
PREV := EHEAD;

f ~ vhile NODE <> MEET do
e ISOLATE(NODE) ;

t TEMP := PRED(NODE);
” PRED(NODE) := PREV;
& PREV := NODE;

NODE := TENMP;
.- endvhile;
-
o NODE 3= EHEAD;
PREV 1= ETAIL;
" vhile NODE <> MEET do
‘ ISOLATE(NODE);
NODE 1= PRED(NODE);
- endvhile;
- PRED(MEET) := PREV;
REROOT(EXIT, MEET)

See Figure 7-10.

62
i

IS OO0 T ¥ 4t 7 N A A D e T L
.b).a'/‘.r'!){"::, 4-?.&‘;1'1" N I PPN R

R ¢« A v
N N S T R TN SOy

- P AN RS
S AN o S e .

s e T I T
S w\ [% h\‘ ‘-‘\\'. - \-':\'\-‘\\' wa Wl W, v, o, .
‘h&Ldﬁu@nﬁhﬂ&u&&umm&&ubmmmm&j

S aat Tall tafoiall cad s 1o caf ok ol tag ik talocall sl thiesalie i i TURIY

<
ETAIL EHEAD
Figure 7=9 Pivot Type 3 - Initial Position
63
RPN PP VR T TR YL F VR 5. PR VEArey PRPR L VY. WO PO IV 0. PN J00 -y N WY WL PO VR WY DI PR ghp o VP o W

heuin A 0 B Al IR A A e e e

B ax Sed el R2 S0k an van 1og 2ok ook ed den ded tok ik dad et delt Relc il ind S T

owecaceeey .-------.’. goocecaeeay oeoeccoccaey

QPeccancaccwy goew

After Section A After Section B

. Figure 7-10. Pivot Type 3 During pivot

64

T T T Y I i e SR Y
E TR SN J‘#‘; MR A
AR TR S R e I :}.m'.r.:.r_.nl.:.

= a ke ~ = B a Aal ek dadh Bai Sl Holh Balk- i A & A E A b A A B oA oA B i A A he A he REa Rl Abe BAha Ale fle Al Ale ol "AN Al Sl SRl Lal Sal Sl el Sad i

-
U4 &

[}

3N

T e
) ’
"

n &
xS

o S

‘5

- -»
SRR

-’ -l)
‘ 1 -
k) N Iv
. “
Wl W

o3

. -
" t ‘!

4 - -J
NN
>
o
34 .
VNS
2
.‘ \
l:’:' -
:4" J':‘
I
&
Ea '--------
Y
. LY
S
.
s
' »
‘I b
ne
¢ >
&
.
B \..' "\..
S
°] 'f‘
S
‘K “a
’. f’.
' ’l J!
v,
2,
L
- -
i «
After Reroot (5,6)

oz, !

o

——

.. Figure 7-10. Pivot Type 3 During Pivot (Cont.)

‘L ‘ 65
A R A O AT S e A RN, VR) CORRR SR,

',l

(C
W) 1‘. " .'. v. a' ‘ihr_,h" "

VoW Y -
'v 0, rk.r,:s

b—““m“mmmmmw ST T e e e :T

9 120

7.1.3.4 Pivot Type 4

Pivot type 4 occurs vhen the entering head and tail nodes occur
. in the same tree and the exiting arc is on the cycle (Figure 7-11).

. The algorithm for pivot type 4 ie:

NODE := ETAIL;
PREV i1= EHEAD;
~ vhile NODE <> MEET do
o~ ISOLATE(NODE);
TEMP := PRED(NODE);
PRED(NODE) 3= PREV;

) PREV := NODE;
-~ NODE := TEMP;
endvhile;

- NODE 1= EHEAD;
PREV 1= ETAIL;
iy vhile NODE <> MEET do
i ISOLATE(NODE) ;
PREV := NODE;
N NODE := PRED(NODE);
- endvhile;

PRED_EXIT := PRED(EXIT);
REROOT(CYC, MEET) ;
REV_CYC_REROOT(CYC, EXIT);
CYC_REROOT (PRED_EXIT, CYC);
PRED(MEET) := PREV;

=

.
y

I

a .
ala

See Figure 7-12.

LSRN |

,.\-

66

— - LAkl aho Bt Al g A and o f Bl Lok Sab aef Salb ek oale sl et She ten Aie i Aoy ave Aia Al R S ARl Al Sod Sk shet aah Sab Jo Sat bot Bt fotolfeal

b

2a 3 At
e RRGS

s ‘e

¥,
N EXIT
» B
)
"
x
4)
L
D .
| Y !

! .
) g
7 KN
)
]
'n
.
- ~: »
[7
»

S ETAIL

- Figure 7-11, Pivot Type 4 - Initial Position

& | 67

AP T T R R T T, CATE U T W M NN “w e 0™
. <,."’-,. ASGh '\’\-. -x“ \’\ \\.'\. Y ‘\..\.

X L &

RN Ve \..«s

- L o B 288 Ak Aok .8 .8 820 Bat et Sa¥ St Rat Rol JLEE Al SRRl
L S hm mue hid e Ba AAd o8 8 As A a0 aoi o b o ek Ak el bl ek Rt Sak Al el fed Aok v r
T PR TR VR — T

£

y 5 &

- o«
L]

-~

B

>

>

S

i [N

SO

After Section A After Section B

B

k) NS

Figure 7-12, Pivot Type 4 - During Pivot

68

- - L L&' L] « o - -y - - "--- Ll - "i"
A S TS M A AT I NN

R Saas- Bac aoy gas Bas pes mex Sat Sad mat Bact Sal Se ik Sal kil Acl Aad Abb iel diel Sl Al ek balbdhlh Aol adh e d et

.‘--------. QoeecsenoweeyP

omesceeeay
4
. & \‘ L4 S L4
S ’

After Reroot (3.6) After PRev-Cyc-Reroot (3,1)

Figure 7-12, Pivot Type 4 (Cont,)
69

ol ¥ e At

KRR R P P - PRy PG RS S AP I AT it O JJ‘ R
e e e o - , » RO) Qs \ . <
fzﬂ.d‘. AT oLl el «.ﬂ\;\, w *-.k."n-u ORI Ve A 1AL YIRS) %) 4 9 u.i?:]

- - W T WY WX T WU W WO T WO T T W SN TN TN 11.0-.v‘!‘ﬂvmr"r"nn?\'vr\"\’F.m'ﬁl“ﬂ""‘\‘NW"_"H"‘\"‘T'W'FY“
- e - = - ~r

A A

I
EAA

» wl
oL

E

ceooocoea
u R
\

é After Entire Routine

. Figure 7-12. Pivot Type 4 (Cont,)

- 70
" |

. Vo e AN
0 "\.‘. DALY T

o T T4 T P o ol o e Ny

a

'l 'l
v

ANN

- ' ' ' - ‘
J}fW}J""%‘. }}f. 1'. E N J‘*'Q'.: (.- N‘R aXm #Jlf“*L(L‘L¢‘_‘ML{L‘L“ L.(H.K‘_.‘ -J'K: L{‘._\A_‘A1L(A

WP RPN WA T LT WRA Y FRE T RenERee SRS R TR R T T e

7.1.3.5 Pivot Type S

Pivot type 3 occurs vhen the entering head and tail are in the
same component, but in different trees. The exiting src occurs on
the cycle (othervise it vould be pivot type 2). 1If the predecessor
path from the entering tail node to (and around) the cycle is
compared to the path from the entering head, one of theses path vill
reach EXIT first. Denote the node vith the path to first reach EXIT
as LEAVE and the other as STAY. Denote the corresponding cycle nodes
as CYC_LEAVE and CYC_STAY (see Figure 7-13).

The algorithm for pivot type 5 is:

NODE := LEAVE;

PREV := STAY;

vhile NODE <> CYC_LEAVE do
ISOLATE(NODE);
TEMP 1= PRED(NODE);
PRED(NODE) := PREV;
PREV := NODE;
NODE := TEMP;

endvhile;

PRED_EXIT := PRED(EXIT);
REV_CYC_REROOT(CYC_LEAVE, EXIT);

NODE := STAY;
PREV 1= LEAVE;
vhile NODE <> STAY_CYC do
ISOLATE(NODE);
PREY := NODE;
NODE := PRED(NODE);
endvhile;

CYC_REROOT (PRED_EXIT, CYC);

See Figure 7-14.

71

--------- T e S

- ’ ‘. ".‘ % Tt L}
\ \ "ot e
Catata.fa (-n‘:«: ' ..’. PR A Ay

CYC LEAVE CYC STAY

by STAY

» LEAVE 7 < 10)
Ie)

s of

L |

.
.

Figure 7-13, Pivot Type 5 - Initial Position

72

. T N A S A S T I Bl Rer o ‘..‘.J-:‘,p-‘("‘J’?,,‘y- "
e A T Y T e T A o T

- WYY Y o pac Sas Bas Sat gk et dan Aak fad Sadl Bal Rl Al el et Rt el

n

'4.

s

peoeacasecaay

Yoo mewP

pooecamaney

KX -l

N

..
[
T

td

B

pupspspsST Y Y 1 4

! After Section A After Rev-Cyc-Reroot (3,1)

v

k

ﬁ Figure 7-14. Pivot Type 5 During Pivot

73

SE ake oom aiia gt oig aoa aih s and obib ilfeadieabieal e e Al aad de= Aok tom o n g st g At o A d o AL A i TR YT YR WWO TSNS W W W W W W W '-.vT

e N5 Y
azals
. & B

X
[}
oh)
) }'
", \'.‘
)
%
.
a: e
n
\)
o
i -{'
TS
1 ‘J

&AL';- ."" :va-,':{x"?
L

L

z = After Section B After Pivot

l 5

"3 aX

4 ::; .

-

e b :

s
-
.

AxaNN
]

A .

¢)

o

{

¢' Figure 7-14 Pivot Type 5 During Pivot (cont,)
A

v

i o»

0 7

! 74

RGOS0 ot TS P RPN P P Pl AT O (T PR CRR AT
"“‘n‘.-h‘!'n‘?"@‘!'\‘..’n‘.°~ IR 'l e, b L o .' N \' vvl 2O ‘”" PR o {4 X0 v

. \ - w

}".F}.." :"‘--:.“’N(] I‘:‘l "\’_. .‘ [

ok #
A

A a
P

o

f.

- Wt W I W W WMTLr T T T W WU e =

7.1.3.6 Pivot Type 6

Pivot type 6 occurs wvhen the entering arc has its nodes in
different components and the exiting arc occurs on a cycle. (I£f the
exiting arc is not on a cycle then the pivot type is 2).

Denote the node of the entering arc that is in the same component
as the exiting arc as LEAVE and the other end as STAY. Let CYC be
the cycle node associated vith LEAVE. See Figure 7-183.

The algorithm for pivot type 6 is:

REROOT (CYC, LEAVE) ;
PRED_EXIT := PRED(EXIT);
REV_CYC_REROOT (CYC, EXIT);
CYC_REROOT (PRED_EXIT, CYC);
HANG(STAY, LEAVE);

See Figure 7-16.

7.2 Updating the Duals

In order to calculate reduced costs quickly, dual values
associated vith the node are maintained in core. Because the dual
variable calculation is a computationally expensive operation, it is
fortunate that only a small number of dual values change at each
iteration. The duals that change are exactly those whose node

receives a nev LEVEL vslue.

The key to calculating duals is that reduced cost for

75

bm%n‘. l";k"t)’ :}&*Ll(m R.L* "N A -\." 1.'\.1-_{.5.{!_ L&'A, .{:. .‘\{.I\.u. M{& -.k‘(&{kfa-&x:.k:h{;'\,;\ ;-_M'LL: a.m..."r.. Jﬁ} ’ Y -m

LEAVE 5 LR I S B IR B AR IR S) STAY

Froh

Ry
o

s

.- Figure 7-15. Pivot Type 6 - Initial Position
, 76

TS
NSOV RGN W :J
B T DV) -‘4...-‘

a,
4

[

Yy
~

x
‘5

*

b

(VR

n

e

LN

5

(R}

i

vA

-.
F
s s,

g

fa's

gy ooecooany Ygeocoececey gooemoaowy geecccseey

pupnp—r L L X 1 d

After Reroot (4,6)

Preconcveany geceacccewy Qeeecaacaay

esmoweonecnd

Pev-Cvc-Reroot (4,1)

Figure 7-16., Pivot Type 6 - During Pivot

77

Qemecccony Precccccaey
A) &’ \ o’
"

After Cyc-Reroot (4,2)

o eocacoaaey ereceaccaecny
. . L4

After Pivot

Figure 7-16. Pivot Type 6 - During Pivot (Cont,)

78

e '.J“-"-"--’n% ;‘{"“--'-n o
RTINS Al QLG NS B

»

- - TWEWEW TN UWETNEW W ER ETFTET W ETVE O A EE RIT R I e T T TS T T T T

o arcs in the basis are alvays zero. The reduced cost calculation is

v (from Section S)
ii MULT « DUAL(HEAD) - DUAL(TAIL) - COST
i Duals for generalized networks are uniquely determined.
\3 if Calculation of duals for nodes on the cycle is involved and is

revieved in Section 7.2.1. The dual for a node off the cycle is

based smolely on the dual value of its predecessor. This is shown in

i~ Section 7.2.2.
N
B
,: a: 7.2.1 Dual Values on the Cycle
)
Y -
YA
g o

Given a cycle with k nodes there are k arca betveen them. Each
; arc creates one reduced cost calculation. Therefore, there are k

3 linear equations to find k unknown duals.

i' If one dual on the cycle is given, the rest can be obtained

by traversing the cycle vith the PRED values. The method to find

> one dual on the cycle follovs.

. Let the nodes on the cycle to be 1 ... k, vwvith PRED(i) = i+]1 and

PRED(k) = 1, The folloving calculastes DUAL(1):

TOT_SUM := O;
| TOT_MULT := 1;
o NODE := 1;
repeat
., if ARC(NODE) < O then (* ARC is from PRED(NODE) to NODE)
. I TOT_MULT := TOT_MULT / MULT(NODE);
i TOT_SUM := TOT_SUM - TOT_MULT e COST(NODE);
else
-; .7 TOT_SUM 3= TOT_SUM + TOT_MULT e COST(NODE);
o e TOT_MULT := TOT_MULT « MULT(NRODE);
‘ endif;
W NODE := PRED(NODE);
K until (NODE = 1);

. DUAL(1) = TOT_SUM / (1-CMULT(1));

Duals of cycle nodes associated vith self-loops are easier. For
this case, the dual is simply the cost divided by the self-loop

multiplier.

7.2.2 Dual Values not on the Cycle

The dual value for a node off the cycle is calculated as:

i1f ARC(NODE) < O then
DUAL(NODE) t= (DUAL(PRED(NODE)) + COST) / NMULT;

olme DUAL (NODE) := DUAL(PRED(NODE)) e MULT - COST;

endif

It is important that the dual variable updstes are performed in
the correct order. For every node, the dual for the PRED of the node
must be calculated before the dual of the node can be calculated. It
is for this reason that THREAD is defined to be the preorder
traversal. Folloving the thread wvill ensure update of the PRED of

any node before the node itself; the DUAL update can be accomplished

at the same time. This reduces the number of times any node must be
examined during a pivot, yielding in a significant reduction in

computation time.

7.2 Updating the Flovs

The final structure to update is the basic flov values. Nost of
the vork in this update wvas accomplished during the calculation of
the exiting arc. The updated column wvas the change in flowv on the

basic arcs if one unit of flov ves put on the entering arc. This

80

e T R A e R

T T D I T T T O T O O T O T S R PO T e D PR R TR TR R e R A T e e

»
t 4

‘v
)
G

B

o

RIS Y
f.‘n"t

alloved a calculation of the maximum flov that could be placed on the
entering arc without violating sny bounds. This value is multiplied
by the updated column and added to the current flovs to produce the
updated flovs.

Algorithmically, it is eassier to perform this update vhile the
basis is being updated. As each node is visited it is a simple
matter to calculate the amount the flov will change and update FLOW
sccordingly. Some nodes are not visited during the basis update and
those nodes must be visited solely to update the flowvas. For
instance, in pivot type 1, no basis update is performed but the flows

must be updated. All nodes visited in the calculation of the exiting

arc must be revisited to update the flovs.

81

’

2.7

2R

LA

e

v
.
s

| o

8.0 OTHER CONCERNS

Major portions of the primal simplex method have been covered.
Given a basie it is possible to find an arc to enter the basis,
determine the arc to exit the basis and update the bssis. The only
other step of the primal simplex wmethod is to find an initial basis.
Section 8.1 gives tvo methods for doing this.

One other concern is the efficiency of the generalized netvork
primal simplex methaod vhen solving a pure netvork. It is generslly
thought that a pure netvork code vill execute tvo or three times
faster than a generalized netvork code. Some of this improvement is
due to the fact that generalized netvorks wmust keep track of the
multipliers vhile the pure netvork has one less piece of data for
each arc. Sowme efficiency relates to the structure of the pivots
used with pure netvorks. This pivot and basis structure can be used
vithin a generalized netvork code, so pure netvorks and "alwmost® pure
netvorks can be solved more quickly than generalized netvorks with

the generalized netvork simplex method. This is detailed in Section
8. 2.

8.1 Initial Basis

The starting basis has a large effect on time required by the
primal simplex method. Ideally, if the optimal basis is used as the
starting basis, then no pivots need be performed. The concept of
quality of the atarting basis is difficult to quantify, although it

seemns reasonable to assume that a good starting beseis is one vhich

e al e aav e sar ey St gin ey Sad Sad aum il S h- B hue A i Ao ALE S i A el e
e i abd akh ogieh add ad i -

Y w TR TV WYYV e TR ET OO re - R ROy TRt e W o maemE o eeo sl oo e
o v www -

Ny has a large number of arcs that are also in the optimal basis.

If too much time is spent in trying to find a good starting
‘ basis, the total execution time might be larger than using s poorer,
‘ but easier to find, basis.
,-:: An initial basis must satisfy the folloving conditions:
! 1) There must be one arc in the basis for each node.

2) Each component generated by the arcs in the basis must have
}‘ exactly one cycle, wvhich may be a self-loop.

3) The net flovs into and out of each node must be equal to the

ey supply or demand at that node.

< 4) The flov on any arc not in the basis must be either zero or
h the capacity of the arc.

,:% S) The flov on any arc must be betveen zero and the capacity of
" the arc inclusive.

i Section 8.1.1 describes the easiest basis to find: the

> artificial start basis. By spending essentially no time in creating
::' the initial basis, this basis makes no attempt to guess vhich arcs
! wvill be in the optimal basis.

! Section 8.1.2 discusses basis creation methods that try to guess
':' vhich arcs are cptimal. These advanced start methods are often

- problem specific, although some general purpose methods are possible.
%

'}C 8.1.1 Artificial Start

&

E; Associated vith each node in a generalized netvork is s self-

loop, representing the slack or surplus variable at the node. If the

4 N

supply or demand at the node must be satisfied then there is a large

cost on the self-loop, othervise the cost is zero. The artificial

E 83

.o SN BT T TR SRR L PR LA ER LR (Pt Gy PRt OISR PLLE L S LS OO
R R S T S el b S S e T ke kSRR RN

NN, \
- &

—rr—e 2§ .4 a2 ik 2al sof o ol el Al Sl il Al e dhat TS SR i Bl

start basis is as follovs:

= 2 a
Ll-.L'J ' . <+

7" et

1) The flov on every self-loop is the supply or demand at the

' node.

2) The flov on every other arc is zero.

W
S} The arcs in (1) above form the basis. This basis satisfies the
q five conditions given in Section 8.1. It is also easy to create.
= Furthermore the PRED, THREAD, LEVEL and RTHREAD are very easy to
Fj calculate. Figure 8-1 illustrates this for the netwvork in Figure
).
2-3.
~
f. The disadvantage of this method is that no attempt is made to
- determine vhich arcs will likely occur in the optimal basis. The
b
') number of pivota required after an artificial start is probably more
;ﬁ than the number required after other types of starts.
:‘F‘-
i 8.1.2 Advanced Start
08
o A bamsis that attempts to contain arcs that will occur in the
! optimal basis is referred to as an advanced start. Advanced starts
can often be determined from the structure of the particular problem
2: types that are being solved. Many, although not all, advanced start
5-4
strategies adopt tane folloving form:
?1
o
’ 1) Sort the arcs in decreasing order of attractiveness
. (likelihood to be in optimal basis)
-9

2) Using the most attractive unexamined arc, place the maximum

amount of flov that vwill keep feasibility at the nodes and the arc on
Y the arc.

w 3) Repeat Step 2 until all of the arcs have been
examined.
ﬁ Algorithms that adopt the above strategy and place all

. unallocated supply and demand on the self-locops create a basis that

84

- .

........ A

=z

LA

[Ny

W

1)

iy

- -r.' 8
a{&f ’&;}ﬁuﬁ

RPN N

Rt
R
R
R

Figure 8-1,

“-,\ 57
LA - ".A.h..“

85

N .Cs‘fa‘ﬁsf&fm

J

I

A * Al

-('

Artificial Basis

I I T T O e T O N N N o T O O TN T T O T T Oy o

\\'
mﬁaimf\;h-

AN

N o Ant Ba et Sl Bab Bk ol

>

~

hl

2=

@JC@@JCQCQQJCQCQCQ

RS
LJ_h....A.I...

JWW"WYVMH!VVW

satisfy the five conditions in Section 8.1 (possibly sowme self-loops

wvith zero flov will have to be added to the basis). If easy methods

of calculating attractiveness are available and if attractiveness is

a true weasure of the likelihood of being in the optimal basis then

=
2 advanced starts of this form are generally fairly effective.
In Figure 8-2 the arcs in Figure 2-3 are ordered by increasing
]
cost and an advanced start basis is formed.
&
!

8.1.3 Specialization for MRMATE

55

Arcs of the MRMATE wmodel are already sorted into three classes

| S

based on attractiveness. This permits an easy advanced start. Arcs
in the zero cost arc file are placed into the basis first. Next, low

cost arcs are used. Because there are a large number of high cost

]

. arcs, it seems better to ignore them in creating an advanced start

pr and let the rest of the simplex algorithm choose which high cost arcs
Ty

[

to use by pivotting them into the basis as needed.

8.2 Effect of Pure Netvork Structure

=

oA

" Pure netvorl.s can be solved more quickly than generalized

b netvorks. This is for tvo reasons:

& 1) Pure netvorks have multipliers of one. Hence, rather than
= using multiplications and diviesions, the various simplex calculations
éf can assume the NMULT is one.

4 2) The basis structure of pure netvorkse is simpler than that of
E: generalized netvorks. Each component of a pure netvork basis wmust
.';',: be rooted at a self-loop.

o

86

}l‘

TN Lt R TR e oy £ o LA

W LA L ITHETE GVUHIN W B Ret N ETVEIUETURYY Ry -n-.‘-‘mum—v--..‘.m-cvmw

i

"‘ :‘n .
4 I
1SS

R
L

B ot P od
1

- -
e |
-

el
,

[o
S
Ce

o

¢

0,
Ui
oV
.I
('S

‘l"

re "2
® "2
&
o , -
R
-' .’
SO
Y-, .

%

| . (2"
St
IS
» , Figure 8-2. Advanced Start Basis

\“ R T Nl LN A LR CREAPLERCR
¥, l'!.'l‘:‘l.: . Q'e‘l . l"'o‘ ULK 4 10.- AfLU N ’I Al A

4 Wl)

-

van

N =

<.

TETIEF TR T T TRy TR TR T TR TR TR TR TR TRy E e e e, e, o, 7 7

It is possible for a generalized netwvork code to solve pure
netvorks almost as quickly a pure netvork code by performing the
folloving:

| 1) A multiplier is compared to 1 before a division or
multiplication. If it equals 1 then the division or multiplication
is not needed.

2) Data structures are used that are equivalent to pure netvork
dats structures in the case of a self-loop root.

Unfortunately, handling the multipliers ss suggested in point one
vill slov dowvn execution for all netvorks. This decrease in speed
may not be excessive but may not be vorthwvhile if the number of pure
arcs is small. Speed increases will occur, hovever, even in
generalized netvorks, as long as the netvork has a large proportion
of pure arcs.

Data structures used in pure netvorks are exactly those outlined
in Section 4 in the case vhere the root cycle is a self-loop.
Advantages of the basis structure can occur in any generalized
netvork that can be converted to a pure netvork by scaling the rows
and columns of the constraint matrix. The basis advantages can be
gained even if the mscaling is not performed. An example of a
generalized netvork that can be scaled to a pure netvork is given in
Figure 8-3.

The main advantage of the pure netvork structure is that all
pivots will be of types 1 or 2 (if the self-loops are replaced with
artificial arcs and an artificial node, see (3]). No cycles are
ever created, so no cycle multipliers need be calculated (Section 4).
Calculation of the cycle multiplier is s very expenasive operation,

since it involves wmany multiplications and divisions.

88

T W T OV TOTT O p e han

e It seems likely that a netvork that is "alwmost® transformable to
a pure netvork wvould have many of the same advantages as s netvork

i transformable to a pure netvork. "Almeoat® must be defined very
carefully. For inatance, Figure 8-4 shows a netvork with just one

EE arc vith a multiplier not equal to one. Howvever, this netvork is

! equivalent to the netvork in Figure 2-3 and the tvo netvorks sre
solved in almost the same vay by a generalized netvork simplex

o method. The number of cycle calculations is the sawme, as is the tiwe
required. The reason for this is that non-pure arcs occur in the
basis disproportionately for their quantity. This shows the

R disadvantage of defining "almost" pure netvorks in terms of the

percentage pure arcs.

gt "Almost® pure netwvorks are those vhose valid basis tend tc have

self-loops, rather than cycles. Cycles are formed wvhen the exiting

arc occurs on the common part of the backpaths formed by the entering
arc. "Almost® pure netvorks require that for s "typical®" basis and
entering arc, the exiting arc occurs on the separate parts of the

backpath (see Section 6.1).

$ 8.2.1 Specialization for MRMATE

>

- As might be expected, the MRMATE model can be a pure,

= transformable to pure, or “almost®™ transformable to pure netvork. If
- there are no sea channels then all of the multipliers in the netwvork
EE are one, sc a pure netvork results. If there are no air channels

i then the netvork is transformable to a pure netvork. This is

é equivalent to using the volume of the movement requirement rather

o than the veight.

- R SRR A,
DA ARG CR s

W T T WTTRT YT E TN T T T UTY W T TR T A T r I T R AR T TR AT AT RIS AR TR Eeeo s Eeemomeo e e

, -10 9@ 100

~

all multipliers are +1 (b) Equivalent Pure Network

et
N B 100
‘ 1'::;
2
= -40
“ 100
L)) i
y ™
SO
3 50
'.;_i h"}
B t] “
R u
“ 30 50
now
S
' label: Multiplier 50
X (a) Generalized Network
S
R
I
By & 5
¥
l!’ 100
') !
' 3
3w 100
q.\ ':'.
oW
[
- = -80 100
‘B
#‘ :'.
‘I 50
%
L. :-‘
o
-45
72 50
4 &
0
3 50
K) .
o
s
o2

Figure 8-3, Generalized Network Transformable to Pure Network
90

P - . ._
-4"f¢ ,. . ".‘ ‘\.J‘\.'F .."'\- .J' q’. *'f ..._‘“

™
,.
"

!

o

U S~
N ﬂﬁn'":" ‘*:"‘ "a_f" '

o ‘, - T LT EE AL,
ERTLITAE VX SRS
“ AR, i’u“v !'v.l'l.i'v "0.'0. WIh ,l " 2 0

-
f]
3, -
13 -
M.
H ',4"
SY -
o -
'

l‘—}

.
-
3

/RN

N 'n":

. [
S
WA ~
ST
)
, o
) =
[AA -
0

N -300
AN
S
v 4_"
. o 3
Multiplier

E

SO

¥

L

WIS

> ,:..'

b -400

-
b~

‘ol

-

1o .
=, -
- -
»”, .
- .
-, -

r
u.‘l'

P

>
Asal

-y

.
h_‘r

gl

S 1000 4 e
Y

¢ ! .

z 'r

k- 600

v.- Figure B8-4, Equivalent "Almost Pure’ Network
91

v
. “

|20 2 L
L

™

S e
X

-.4,-{ R

.' '|v v"' k'w"\ '.}f-‘c'

.3 If there are far more air channels than sea chsnnels, or more ses
K%
§ channels than air channels, then the resulting netwvork is "almost®

transformable to a pure network as long as the less numerous channels

are not disproportionately important. This is due to the following.

‘r
[3
&,

L4

]
>

Given a netvork wvith far more air channels than sea channels, & basis

B

54 and an entering arc, if the channels are equally important, the

& typical entering arc will be an air channel arc. The backpaths

Ei represent the channels that will have to change flows in order to

;; permit the entering arc to join the basis. Typically, this will only
Fi involve air channels. This means that the exiting arc cannot occur
o on the common part of the backpeth, smince a cycle wvith a cycle

ié multiplier of 1 would be created. A similar argument holds for more
Q sea channels than air.

- Hov many more is "far more"? Certainly 75 air channeles and 25
E sea channels will not exhibit much pure netvork structure, since most
- backpaths will contain both air and sea channels. Also, 99 sea

o

e channels and 1 air channel vill exhibit a lot of pure netwvork

!: atructure, since most pivots will reassign flowv among the sea

) channels. The effect of pure netvork structure is further examined
: in [4).

3

.3

L

yos

‘<.

.. 92

N B T A Nt .
‘_:._,.J,~‘-_.J-_,$_.‘ PR AN AN

e e At A A A T
e e e

T e W LT S N iy

AD-A168 298 GENERRLIZED NETHORK INPLENENTRTIONS(U) GEDRGIR HIST OF
TECH ATLANTA PRODUCTION AND DISTRIBUTION RESEARC
CENTER J J JARVIS ET AL. 1986 PDRC-86-03

UNCLASSIFIED NBB814-85-C-08797 F/G 571

&

‘u

AR X G B
rg-y 5 L

>,
3

‘e oW

TR ALACRP

o

o

a2

=

1
\\\\‘:__5

M=

.

R

£

i

XX
ey

i1y (-"rv T

'O
’l:o.) l%@ -'“’Q'
,,..,-‘,3""""*‘6: 'o"a‘ \"‘.0 q’ O l"";t..“ t':‘&\ WA

i b
e J315 2:2
g

T

NATIONAL BUREAU OF €
MOROCOPY RESOLYY TEST

o T e R

2
KON ‘
Pty "‘(M o 'A“'h"‘ LR N " ‘ ' \.“’“ "ln“il"l“‘c.. l't‘i' LA § "“‘.‘

B =2 ko

ax
-.-1

L4

.
v,

e &E

T

+2

o RS

4
it

REFERENCES

{11 Bazaraa, M.S. and J.J. Jarvis, Linear Programming and Network
Flows, John Wiley and Sonss New York, 1977.

(2] Brown, G.6. and R. McBride;"Solving Generalized Networks", Management
Science, 30, 12, pp 1497-1523.

3] Jarvisy, J.J.s H.D. Ratliff, D.E. Eisenstein, A.V. Iyer, W.G.
Nulty, and M.A. Trick, "System Description: SYSTEM FOR CLOSURE
OPTIMIZATION AND PLANNING EVALUATION (SCOPE)", PDRC Report 84-09,
Georgia Institute of Technology, 1985.

[4] Jarvis; J.J.s H.D. Ratliff and M.A. Trick, "Generalized Network
Results on a Microcomputer”, PDRC Report (to be published), Georgia
Institute of Technology, 1986.

£3] Kennington, J.L. and R.V. Helgason, Algorithms for Network
Programming, John Wiley and Sons, New York, 1980.

93 -

e
J ’ NIRRT by Vi SAON000 JOOOOOCAINT 0
R 2 Do [T NG IR AR TSI DOt D ARY Lt i KRSt L L RO CERA O T S A NS SOOI YOO

-i

e e e)

P
AT

-

-
s

>TSS BESTLw

-

;;.:'.«‘.P?- s

OO X, G
-

-
-~
>

D)

g} .tl
."
e
5" 2
)
n
i
[
ﬁ';'l K3
y

n X ,i. .4’ .»4.0"9
A o, ‘

".. .““."o AR 3 N,
" .:“‘. . ‘:‘?? 2 ‘:'v ?."::;'f:\"}s’?é' ".&‘ha" 3’

< KT) Q‘Y BRIV 0
5.‘ '&',‘I j? - » e“&’b '\‘ 'l “O ?’ ‘\ .hl ~‘§ ’A (3 "ﬁ) 6" Of .\::"..“. ""\"’ - : m

gl

